Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5873, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198680

RESUMO

Low dimensional fermionic quantum systems are exceptionally interesting because they reveal distinctive physical phenomena, including among others, topologically protected excitations, edge states, frustration, and fractionalization. Our aim was to confine 3He on a suspended carbon nanotube to form 2-dimensional Fermi-system. Here we report our measurements of the mechanical resonance of the nanotube with adsorbed sub-monolayer down to 10 mK. At intermediate coverages we have observed the famous 1/3 commensurate solid. However, at larger monolayer densities we have observed a quantum phase transition from 1/3 solid to an unknown, soft, and mobile solid phase. We interpret this mobile solid phase as a bosonic commensurate crystal consisting of helium dimers with topologically-induced zero-point vacancies which are delocalized at low temperatures. We thus demonstrate that 3He on a nanotube merges both fermionic and bosonic phenomena, with a quantum phase transition between fermionic solid 1/3 phase and the observed bosonic dimer solid.

2.
Nat Commun ; 12(1): 138, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420055

RESUMO

Generation of electric voltage in a conductor by applying a temperature gradient is a fundamental phenomenon called the Seebeck effect. This effect and its inverse is widely exploited in diverse applications ranging from thermoelectric power generators to temperature sensing. Recently, a possibility of thermoelectricity arising from the interplay of the non-local Cooper pair splitting and the elastic co-tunneling in the hybrid normal metal-superconductor-normal metal structures was predicted. Here, we report the observation of the non-local Seebeck effect in a graphene-based Cooper pair splitting device comprising two quantum dots connected to an aluminum superconductor and present a theoretical description of this phenomenon. The observed non-local Seebeck effect offers an efficient tool for producing entangled electrons.

3.
J Low Temp Phys ; 195(1): 72-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31073248

RESUMO

We have designed and characterized a cryogenic amplifier for use in 3 He NMR spectrometry. The amplifier, with a power consumption of ∼ 2.5  mW, works at temperatures down to 4 K. It has a high-impedance input for measuring a signal from NMR resonant circuit, and a 50  Ω differential input which can be used for pick-up compensation and gain calibration. At 4.2 K, the amplifier has a voltage gain of 45, output resistance 146  Ω and a 4.4 MHz bandwidth starting from DC. At 1 MHz, the voltage and current noise amount to 1.3  nV / Hz and 12  fA / Hz , respectively, which yields an optimal source impedance of ∼ 100  k Ω .

4.
Sci Rep ; 8(1): 14952, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297734

RESUMO

We have investigated current-current correlations in a cross-shaped conductor made of graphene. The mean free path of charge carriers is on the order of the ribbon width which leads to a hybrid conductor where there is diffusive transport in the device arms while the central connection region displays near ballistic transport. Our data on auto and cross correlations deviate from the predictions of Landauer-Büttiker theory, and agreement can be obtained only by taking into account contributions from non-thermal electron distributions at the inlets to the semiballistic center, in which the partition noise becomes strongly modified. The experimental results display distinct Hanbury - Brown and Twiss (HBT) exchange correlations, the strength of which is boosted by the non-equilibrium occupation-number fluctuations internal to this hybrid conductor. Our work demonstrates that variation in electron coherence along atomically-thin, two-dimensional conductors has significant implications on their noise and cross correlation properties.

5.
Nat Commun ; 6: 6981, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25912295

RESUMO

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum-mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation-pressure interaction by six orders of magnitude, allowing to approach the strong coupling regime. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping attributed to the qubit. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.

6.
Phys Rev Lett ; 114(9): 096602, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793837

RESUMO

A split Cooper pair is a natural source for entangled electrons which is a basic ingredient for quantum information in the solid state. We report an experiment on a superconductor-graphene double quantum dot (QD) system, in which we observe Cooper pair splitting (CPS) up to a CPS efficiency of ∼10%. With bias on both QDs, we are able to detect a positive conductance correlation across the two distinctly decoupled QDs. Furthermore, with bias only on one QD, CPS and elastic cotunneling can be distinguished by tuning the energy levels of the QDs to be asymmetric or symmetric with respect to the Fermi level in the superconductor.

7.
Rev Sci Instrum ; 85(8): 085106, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173311

RESUMO

We demonstrate successful "dry" refrigeration of quantum fluids down to T = 0.16 mK by using copper nuclear demagnetization stage that is pre-cooled by a pulse-tube-based dilution refrigerator. This type of refrigeration delivers a flexible and simple sub-mK solution to a variety of needs including experiments with superfluid (3)He. Our central design principle was to eliminate relative vibrations between the high-field magnet and the nuclear refrigeration stage, which resulted in the minimum heat leak of Q = 4.4 nW obtained in field of 35 mT. For thermometry, we employed a quartz tuning fork immersed into liquid (3)He. We show that the fork oscillator can be considered as self-calibrating in superfluid (3)He at the crossover point from hydrodynamic into ballistic quasiparticle regime.

8.
Phys Rev Lett ; 113(2): 027404, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-25062231

RESUMO

Cavity optomechanics has served as a platform for studying the interaction between light and micromechanical motion via radiation pressure. Here we observe such phenomena with a graphene mechanical resonator coupled to an electromagnetic mode. We measure thermal motion and backaction cooling in a bilayer graphene resonator coupled to a microwave on-chip cavity. We detect the lowest flexural mode at 24 MHz down to 60 mK, corresponding to 50±6 mechanical quanta, which represents a phonon occupation that is nearly 3 orders of magnitude lower than that which has been recorded to date with graphene resonators.

9.
Nature ; 494(7436): 211-5, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23407536

RESUMO

Hybrid quantum systems with inherently distinct degrees of freedom have a key role in many physical phenomena. Well-known examples include cavity quantum electrodynamics, trapped ions, and electrons and phonons in the solid state. In those systems, strong coupling makes the constituents lose their individual character and form dressed states, which represent a collective form of dynamics. As well as having fundamental importance, hybrid systems also have practical applications, notably in the emerging field of quantum information control. A promising approach is to combine long-lived atomic states with the accessible electrical degrees of freedom in superconducting cavities and quantum bits (qubits). Here we integrate circuit cavity quantum electrodynamics with phonons. Apart from coupling to a microwave cavity, our superconducting transmon qubit, consisting of tunnel junctions and a capacitor, interacts with a phonon mode in a micromechanical resonator, and thus acts like an atom coupled to two different cavities. We measure the phonon Stark shift, as well as the splitting of the qubit spectral line into motional sidebands, which feature transitions between the dressed electromechanical states. In the time domain, we observe coherent conversion of qubit excitation to phonons as sideband Rabi oscillations. This is a model system with potential for a quantum interface, which may allow for storage of quantum information in long-lived phonon states, coupling to optical photons or for investigations of strongly coupled quantum systems near the classical limit.

10.
Nat Commun ; 4: 1420, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23361011

RESUMO

Superconducting circuits with Josephson junctions are promising candidates for developing future quantum technologies. Of particular interest is to use these circuits to study effects that typically occur in complex condensed-matter systems. Here we employ a superconducting quantum bit--a transmon--to perform an analogue simulation of motional averaging, a phenomenon initially observed in nuclear magnetic resonance spectroscopy. By modulating the flux bias of a transmon with controllable pseudo-random telegraph noise we create a stochastic jump of its energy level separation between two discrete values. When the jumping is faster than a dynamical threshold set by the frequency displacement of the levels, the initially separate spectral lines merge into a single, narrow, motional-averaged line. With sinusoidal modulation a complex pattern of additional sidebands is observed. We show that the modulated system remains quantum coherent, with modified transition frequencies, Rabi couplings, and dephasing rates. These results represent the first steps towards more advanced quantum simulations using artificial atoms.

11.
Nature ; 480(7377): 351-4, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22170682

RESUMO

The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

12.
Phys Rev Lett ; 100(19): 196802, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18518472

RESUMO

We have investigated shot noise in graphene field effect devices in the temperature range of 4.2-30 K at low frequency (f=600-850 MHz). We find that for our graphene samples with a large width over length ratio W/L, the Fano factor F reaches a maximum F ~ 1/3 at the Dirac point and that it decreases strongly with increasing charge density. For smaller W/L, the Fano factor at Dirac point is significantly lower. Our results are in good agreement with the theory describing that transport at the Dirac point in clean graphene arises from evanescent electronic states.

13.
Phys Rev Lett ; 99(15): 156803, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17995202

RESUMO

We have measured shot noise in single-walled carbon nanotubes with good contacts at 4.2 K at low frequencies (f=600-850 MHz). We find a strong modulation of shot noise over the Fabry-Perot pattern; in terms of the differential Fano factor the variation ranges over 0.4-1.2. The shot noise variation, in combination with differential conductance, is analyzed using two (spin-degenerate) modes with different, energy-dependent transmission coefficients. Deviations from the predictions from Landauer-Buttiker formalism are assigned to electron-electron interactions.

14.
Phys Rev Lett ; 98(8): 087002, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17359119

RESUMO

We have investigated electrical transport in a diffusive multiwalled carbon nanotube contacted using superconducting leads made of an Al/Ti sandwich structure. We find proximity-induced superconductivity with measured critical currents up to I(cm)=1.3 nA, tunable by the gate voltage down to 10 pA. The supercurrent branch displays a finite zero bias resistance which varies as R(0) proportional to I(cm){-alpha} with alpha=0.74. Using IV characteristics of junctions with phase diffusion, a good agreement is obtained with the Josephson coupling energy in the long, diffusive junction model of A. D. Zaikin and G. F. Zharkov [Sov. J. Low Temp. Phys. 7, 184 (1981)].

15.
Phys Rev Lett ; 95(20): 206806, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16384085

RESUMO

The effective capacitance has been measured in the split Cooper-pair box (CPB) over its phase-gate bias plane. Our low-frequency reactive measurement scheme allows us to probe purely the capacitive susceptibility due to the CPB band structure. The data are quantitatively explained using parameters determined independently by spectroscopic means. In addition, we show in practice that the method offers an efficient way to do nondemolition readout of the CPB quantum state.

16.
Phys Rev Lett ; 93(19): 197002, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600870

RESUMO

We have investigated the influence of shot noise on the IV curves of a single mesoscopic Josephson junction. We observe a linear enhancement of zero-bias conductance of the Josephson junction with increasing shot-noise power. Moreover, the IV curves become increasingly asymmetric. Our analysis on the asymmetry shows that the Coulomb blockade of Cooper pairs is strongly influenced by the non-Gaussian character of the shot noise.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...