Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(7): 3182-3193, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38358013

RESUMO

BACKGROUND: Peanut southern blight disease, caused by Sclerotium rolfsii, is a destructive soil-borne fungal disease. The current control measures, which mainly employ succinate dehydrogenase inhibitors, are prone to resistance and toxicity to non-target organisms. As a result, it is necessary to explore the potential of eco-friendly fungicides for this disease. RESULTS: Fourteen novel phthalide compounds incorporating amino acid moieties were designed and synthesized. The in vitro activity of analog A1 [half maximal effective concentration (EC50) = 332.21 mg L-1] was slightly lower than that of polyoxin (EC50 = 284.32 mg L-1). It was observed that on the seventh day, the curative activity of A1 at a concentration of 600.00 mg L-1 was 57.75%, while the curative activity of polyoxin at a concentration of 300.00 mg L-1 was 42.55%. These results suggested that our compound exhibited in vivo activity. Peanut plants treated with A1 showed significant agronomic improvements compared to the untreated control. Several compounds in this series exhibited superior root absorption and conduction in comparison to the endothermic fungicide thifluzamide. The growth promotion and absorption-conduction experiments demonstrated the reason for the superior in vivo activity of the target compound. Cytotoxic assays have demonstrated that this series of targeted compounds exhibit low toxicity levels toward human lo2 liver cells. CONCLUSION: Our results provide a new strategy for the design and synthesis of novel green compounds. Furthermore, the target compound A1 can serve as a lead for further development of green fungicides. © 2024 Society of Chemical Industry.


Assuntos
Aminoácidos , Desenho de Fármacos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Aminoácidos/química , Aminoácidos/farmacologia , Arachis/química , Benzofuranos/farmacologia , Benzofuranos/síntese química , Benzofuranos/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Basidiomycota/efeitos dos fármacos , Basidiomycota/química , Ascomicetos/efeitos dos fármacos
2.
J Gen Virol ; 105(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38376497

RESUMO

Baculoviruses are insect-specific pathogens. Novel baculovirus isolates provide new options for the biological control of pests. Therefore, research into the biological characteristics of newly isolated baculoviruses, including accurate classification and nomenclature, is important. In this study, a baculovirus was isolated from Mythimna separata and its complete genome sequence was determined by next-generation sequencing. The double-stranded DNA genome was 153 882 bp in length, encoding 163 open reading frames. The virus was identified as a variant of Mamestra brassicae multiple nucleopolyhedrovirus (MbMNPV) and designated Mamestra brassicae multiple nucleopolyhedrovirus CHN1 (MbMNPV-CHN1) according to ultrastructural analysis, genome comparison and phylogenetic analysis. Phylogenetic inference placed MbMNPV-CHN1 in a clade containing isolates of MacoNPV-A, MacoNPV-B and MbMNPV, which we have designated the Mb-McNPV group. The genomes of isolates in the Mb-McNPV group exhibited a high degree of collinearity with relatively minor differences in the content of annotated open reading frames. The development of codon usage bias in the Mb-McNPV group was affected mainly by natural selection. MbMNPV-CHN1 shows high infectivity against seven species of Lepidoptera. The yield of MbMNPV-CHN1 in the fourth- and fifth-instar M. separata larvae was 6.25×109-1.23×1010 OBs/cadaver. Our data provide insights into the classification, host range and virulence differences among baculoviruses of the Mb-McNPV group, as well as a promising potential new baculoviral insecticide.


Assuntos
Doença de Charcot-Marie-Tooth , Lepidópteros , Nucleopoliedrovírus , Animais , Nucleopoliedrovírus/genética , Filogenia , Baculoviridae/genética , Evolução Biológica
3.
Pest Manag Sci ; 80(3): 1145-1152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37874124

RESUMO

BACKGROUND: Combined use can be an effective measure to improve pest control by viruses and parasitic wasps. However, not all combinations of natural enemies show improved effects. Helicoverpa armigera nucleopolyhedrovirus (HearNPV) and Campoletis chlorideae Uchida are two important natural enemies of Helicoverpa armigera. This study aimed to investigate the combined effects of C. chlorideae and HearNPV against H. armigera larvae and the impact of HearNPV on C. chlorideae. RESULTS: The combination of HearNPV and C. chlorideae exerted increased mortality on H. armigera when C. chlorideae parasitized larvae one day after infection with HearNPV. C. chlorideae could distinguish between HearNPV-infected and noninfected larvae. Besides influencing host selection of C. chlorideae, HearNPV infection had negative effects on the development and reproduction of C. chlorideae. The developmental time of C. chlorideae was significantly prolonged and the percentage of emergence and adult eclosion of C. chlorideae was lower in infected hosts. The adult wasps were also smaller in body size, and female adults had fewer eggs when they developed in virus-infected hosts. CONCLUSIONS: HearNPV combined with C. chlorideae could improve the efficacy of biological control against H. armigera. The results provided valuable information on the importance of timing in the combined use of HearNPV and C. chlorideae for the biological control of H. armigera. © 2023 Society of Chemical Industry.


Assuntos
Mariposas , Nucleopoliedrovírus , Vespas , Animais , Feminino , Mariposas/parasitologia , Helicoverpa armigera , Larva
4.
Environ Res ; 184: 109306, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120119

RESUMO

Roundup® (RDP) is one of the most representative glyphosate-based herbicides (GBHs), which extensive use increases pressure on environmental safety and potential human health risk. The aim of this study was to investigate whether the adjuvant polyethoxylated tallow amine (POEA) or the herbicidal active ingredient glyphosate isopropylamine salt (GP) in formulation confers RDP cytotoxicity. We demonstrated that RDP and POEA could inhibit the proliferation of human lung A549 cells. Intracellular biochemical assay indicated that collapse of mitochondrial membrane, release of cytochrome c into cytosol, activation of caspase-9/-3, cleavage of poly (ADP-ribose) polymerase (PARP), oxidative DNA damage, DNA single-strand breaks and double-strand breaks are occurred in RDP and POEA treated A549 cells, not occurred in GP treated A549 cells. We conclude that the RDP's effect of apoptosis and DNA damage on human A549 cells is related to the presence of adjuvant POEA in formulation, independent of the herbicidal active ingredient GP. This study would enrich the theoretical basis of the RDP toxicity effects and attract attention on potential human health and environmental safety threat caused by adjuvant.


Assuntos
Dano ao DNA , Glicina/análogos & derivados , Herbicidas , Células A549 , Apoptose , Dano ao DNA/efeitos dos fármacos , Glicina/toxicidade , Herbicidas/toxicidade , Humanos , Medição de Risco , Glifosato
5.
J Pestic Sci ; 44(4): 249-254, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31777443

RESUMO

Undesirable side effects on ecosystems and strong selection for weed resistance demand an increase in the efficacy and a reduction in the dosage of glyphosate herbicide used. The synergistic effect of tank-mixed adjuvant KAO® A-134 (A-134) on the post-emergence activity of the commercial glyphosate formulation Roundup® (RDP) against crabgrass (Digitaria sanguinalis) was detected. Field study also showed that A-134 can increase the herbicidal effect of RDP. Meanwhile, A-134 concentration-dependently decreased the surface tension and increased the spreading area of RDP, causing faster penetration and improved uptake of glyphosate into crabgrass. Moreover, the tank mix with A-134 also increased the adhesion of spray droplets of glyphosate isopropylamine salt (GP) to the leaf surface after rainfall treatment, thus maintaining its herbicidal effect. Data suggested the necessity of using these synergistic properties of A-134 to reduce environmental exposure and glyphosate resistance selection.

6.
J Agric Food Chem ; 67(41): 11364-11372, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31542934

RESUMO

The extensive use of pesticide caused an amount of pressure on the environment and increased the potential human health risk. Glyphosate-based herbicide (GBH) is one of the most widely used pesticides based on a 5-enolpyruvylshikimate-3-phosphate synthase target, which does not exist in vertebrates. Here, we study autophagic effects of the most famous commercial GBH Roundup (RDP) on human A549 cells in vitro. Intracellular biochemical assay indicated opening of mitochondrial permeability transition pore, LC3-II conversion, up-regulation of beclin-1, down-regulation of p62, and the changes in the phosphorylation of AMPK and mTOR induced by RDP in A549 cells. Further experimental results indicated that all the effects induced by RDP were related to its adjuvant polyethoxylated tallow amine, not its herbicidal active ingredient glyphosate isopropylamine salt. All these results showed that RDP has the ability to induce AMPK/mTOR-mediated cell autophagy in human A549 cells. This study would provide a theoretical basis for understanding RDP's autophagic effects on human A549 cells and attract attention on the potential human health risks induced by the adjuvant.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Células A549 , Proteínas Quinases Ativadas por AMP/genética , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Linhagem Celular , Glicina/toxicidade , Humanos , Serina-Treonina Quinases TOR/genética , Glifosato
7.
J Environ Sci Health B ; 54(9): 737-744, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31232652

RESUMO

Glyphosate-based herbicides are broad-spectrum pesticides widely used in the world, which is considered a highly safe pesticide due to their target specificity, but recently, there has been an ongoing controversy regarding their carcinogenicity and possible side effects of glyphosate on human health. Commercial glyphosate-based herbicides (GBHs) consist of declared active ingredient (glyphosate salts) and a number of formulants such as ethoxylated formulants (4130®, 3780®, and A-178®). The aim of our study is to investigate whether the toxicity of GBHs is related to formulants. The effects of GBHs on human health were studied at the cellular level based on their toxicity to liver, lungs and nerve tissue. The inhibitory toxicity to cell viability by GBHs was examined with cell-based systems using three human cell lines: HepG2, A549, and SH-SY5Y. Data obtained showed that all tested ethoxylated formulants and their mixtures with declared active ingredient glyphosate isopropylamine salt (GP) have significant inhibitory effect on cell proliferation, while the declared active ingredient has no significant toxicity. Our study demonstrates that the toxic effect of GBH is primarily due to the use of formulants. This result suggests that GP is relatively safe and a new approach for the assessment of toxicity should be made.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos , Glicina/química , Glicina/toxicidade , Herbicidas/química , Humanos , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Tecido Nervoso/efeitos dos fármacos , Glifosato
8.
Environ Pollut ; 252(Pt A): 917-923, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31226516

RESUMO

Glyphosate-based herbicides (GBH) are the most widely used pesticides in the world. The extensive use of them increases the potential human health risk, including the human inhalation toxicity risk. We studied the effect of the most famous GBH Roundup® (RDP) in the concentration range from 50 to 125 µg/mL on Mitochondria-Associated apoptosis and DNA damage in Human alveolar carcinoma cells (A549 cells). Alkaline comet assay, immunofluorescence assay and Flow Cytometric Analysis assay were employed to detect DNA damages and apoptosis of A549 cells. We found RDP caused concentration-dependent increases in DNA damages and proportion of apoptotic cells in A549 cells. RDP induced the DNA single-strand breaks and double-strand breaks; the collapse of mitochondrial membrane by increasing Bax/Bcl-2, resulting in the release of cytochrome c into cytosol and then activated caspase-9/-3, cleaved poly (ADP-ribose) polymerase (PARP) in human lung tissue cells. The results demonstrate that RDP can induce A549 cells cytotoxic effects in vitro at the concentration lower than the occupational exposures level of workers, which means RDP has a potential threat to human health.


Assuntos
Apoptose/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Pulmão/patologia , Mitocôndrias/efeitos dos fármacos , Células A549 , Adenocarcinoma Bronquioloalveolar/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Ensaio Cometa , Citocromos c/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Simples/efeitos dos fármacos , Glicina/toxicidade , Humanos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Glifosato
9.
J Pestic Sci ; 44(2): 106-111, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31249469

RESUMO

Glyphosate is a common herbicide used worldwide, but its adjuvant has not been studied much. A new adjuvant A-178®, based on the coconut shell extracts, has been developed for glyphosate (glyphosate isopropylamine salt: GP). The potency of the new adjuvant was compared with traditional adjuvant polyethoxylated tallow amine (POEA). Field study has shown that A-178® can improve the herbicidal effect of GP formulation, and, as compared with 41% GP mixed with 7% POEA (GPP), 41% GP mixed with 7% A-178® (recommended dose, GPA) is more effective for weed control. GPA improved herbicidal activity against GP alone by 79.27% and against GPP by 27.38% at 500 g a.i./ha. A-178® decreased the surface tension, increased the spreading area of GP, and improved the uptake of GP in cockspur (Echinochloa crus-galli L.). Our results indicated that the new adjuvant shows better ability to improve glyphosate efficacy than does POEA.

10.
J Cell Biochem ; 120(10): 16811-16823, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31099051

RESUMO

Cervical cancer is the fourth most lethal human malignancy and the leading cause of death among females around the world. Many antitumor agents have microbial origins. 5'-epi-SPA-6952A is a new 24-membered macrolide isolated from the cultured broth of Streptomyces diastatochromogenes. Therefore, we studied the activity and molecular mechanism of 5'-epi-SPA-6952A in human cervical carcinoma HeLa cell. The results showed that 5'-epi-SPA-6952A significantly inhibited cell proliferation and migration. In addition, 5'-epi-SPA-6952A obviously increased the production of intracellular reactive oxygen species and DNA damage in HeLa cells. Moreover, nuclear shrinkage of cells, decrease in mitochondrial membrane potential, and upregulation of Bax/Bcl-2 ratio resulted in the release of cytochrome c, and activation of caspase-9/3 was observed in HeLa cells treated with 5'-epi-SPA-6952A, which means it enhanced the intrinsic mitochondrial apoptosis. Besides, DNA-damage associated proteins poly (ADP-ribose) polymerase (PARP) and p53 were also studied, and the expressions of cleaved-PARP and p53 were drastically increased in HeLa cells treated with 5'-epi-SPA-6952A. Furthermore, we confirmed that 5'-epi-SPA-6952A affected the survival of HeLa cells by blocking cell cycle progression in the G1 phase. Taken together, the results shows that 5'-epi-SPA-6952A significantly inhibited HeLa cells proliferation via intrinsic mitochondrial apoptosis, cell cycle arrest, and blocking cell migration.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Macrolídeos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Feminino , Células HeLa , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Streptomyces/metabolismo , Proteína Supressora de Tumor p53/metabolismo
11.
Environ Pollut ; 241: 1091-1097, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30029317

RESUMO

Natural pyrethrins, one kind of insects' neural toxin, have been used worldwide for the control of pests of crops, livestock, and human beings. However, their specific mechanisms of action are incompletely understood and hence further investigation is required. Here we used a series of experiments including colony formation, fluorescent staining, western blotting, enzyme activity detection, immunofluorescence analysis, and real-time quantitative PCR (QPCR) to investigate whether natural pyrethrins (0-40 µg/mL) are able to modulate autophagy process through AMPK/mTOR signaling pathway, in order to reveal their cytotoxic mechanisms. The results showed that natural pyrethrins markedly inhibited the proliferation of HepG2 cells in both concentration- and time-dependent manners. Particularly, natural pyrethrins could induce the resulting autophagosome, and the intensification of LC3-II formation and translocation, the accumulation of Beclin-1 and the reduction of p62 and thus autophagy. We clarified that natural pyrethrins induced the abnormal level of oxidation reduction metabolism, leading to mitochondrial permeability transition pore (mPTP) opening, ATP depletion and mitochondria eliminating by autophagy. Moreover, the phosphorylation levels of AMPK were significantly enhanced, and the mTOR and p70s6k phosphorylation were drastically decreased. These results showed that natural pyrethrins induced autophagy of HepG2 cells and activation of the AMPK/mTOR signaling pathway might have potential risk to human health.


Assuntos
Inseticidas/toxicidade , Piretrinas/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Células Hep G2 , Humanos , Mitocôndrias/metabolismo , Fosforilação , Piretrinas/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-28223193

RESUMO

Spinosad, a high-selectivity neural toxin, has been widely used in agricultural production. However, the mode of action of spinosad on insect non-neural cells is not yet clear and hence requires further investigation. Therefore, to reveal the cytotoxic mechanisms of spinosad, we investigated whether and how it can induce autophagic cell death. After treating Sf9 cells with spinosad, the resulting autophagosome was observed by transmission electron microscopy and monodansylcadaverine staining. Interestingly, spinosad induced the accumulation of Beclin-1, degradation of p62, and intensification of LC3-B formation and translocation and thus autophagy, whereas, 3-MA treatment reverted the phenotype. Under ATP depletion conditions, spinosad induced autophagy of Sf9 cells and activation of the AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Macrolídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteína Beclina-1/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Células Sf9 , Spodoptera , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
13.
Environ Pollut ; 220(Pt B): 1127-1137, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27852506

RESUMO

Avermectin (AVM) has been widely used in agriculture and animal husbandry based on its broad spectrum of effective anthelmintic activity and specificity targets. However, AVM induction of cytotoxicity in human liver is largely unknown. In this study, we investigate the cytotoxic effects of AVM on HepG2 cells in vitro. The results revealed that AVM inhibited the viability of HepG2 cells and enhanced apoptosis. Established assays of cytotoxicity were performed to characterize the mechanism of AVM toxicity on HepG2 cells. Typical apoptosis morphological changes were shown in AVM-treatment cells including chromatin condensation and DNA fragmentation. We demonstrated that AVM-induced apoptosis of HepG2 cells were mediated by generated ROS. Moreover, a decrease in mitochondrial membrane potential (MMP) and up-regulating the Bax/Bcl-2 ratio, resulted in a release of cytochrome-c as well as activation of caspase-9/-3. In conclusion, our experimental results show that AVM has a potential threat to human health which may be induce apoptosis of human hepatocyte cells via caspase-dependent mitochondrial pathways.


Assuntos
Bioensaio , Ivermectina/análogos & derivados , Animais , Anti-Helmínticos/toxicidade , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células Hep G2 , Humanos , Ivermectina/toxicidade , Fígado/citologia , Fígado/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA