Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 20(1): 53, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017436

RESUMO

BACKGROUND: Diagnosis of liver disease at earlier stages can improve outcomes and reduce the risk of progression to malignancy. Liver biopsy is the gold standard for diagnosis of liver disease, but is invasive and sample acquisition errors are common. Serum biomarkers for liver function and fibrosis, combined with patient factors, may allow for noninvasive detection of liver disease. In this pilot study, we tested and validated the performance of an algorithm that combines GP73 and LG2m serum biomarkers with age and sex (GLAS) to differentiate between patients with liver disease and healthy individuals in two independent cohorts. METHODS: To develop the algorithm, prototype immunoassays were used to measure GP73 and LG2m in residual serum samples collected between 2003 and 2016 from patients with staged fibrosis and cirrhosis of viral or non-viral etiology (n = 260) and healthy subjects (n = 133). The performance of five predictive models using combinations of age, sex, GP73, and/or LG2m from the development cohort were tested. Residual samples from a separate cohort with liver disease (fibrosis, cirrhosis, or chronic liver disease; n = 395) and healthy subjects (n = 106) were used to validate the best performing model. RESULTS: GP73 and LG2m concentrations were higher in patients with liver disease than healthy controls and higher in those with cirrhosis than fibrosis in both the development and validation cohorts. The best performing model included both GP73 and LG2m plus age and sex (GLAS algorithm), which had an AUC of 0.92 (95% CI: 0.90-0.95), a sensitivity of 88.8%, and a specificity of 75.9%. In the validation cohort, the GLAS algorithm had an estimated an AUC of 0.93 (95% CI: 0.90-0.95), a sensitivity of 91.1%, and a specificity of 80.2%. In both cohorts, the GLAS algorithm had high predictive probability for distinguishing between patients with liver disease versus healthy controls. CONCLUSIONS: GP73 and LG2m serum biomarkers, when combined with age and sex (GLAS algorithm), showed high sensitivity and specificity for detection of liver disease in two independent cohorts. The GLAS algorithm will need to be validated and refined in larger cohorts and tested in longitudinal studies for differentiating between stable versus advancing liver disease over time.

2.
Clin Chem Lab Med ; 61(8): 1511-1517, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-36799248

RESUMO

OBJECTIVES: To evaluate pre-analytical challenges related to high-volume central laboratory SARS-CoV-2 antigen testing with a prototype qualitative SARS-CoV-2 antigen immunoassay run on the automated Abbott ARCHITECT instrument. METHODS: Contrived positive and negative specimens and de-identified nasal and nasopharyngeal specimens in transport media were used to evaluate specimen and reagent on-board stability, assay analytical performance and interference, and clinical performance. RESULTS: TCID50/mL values were similar for specimens in various transport media. Inactivated positive clinical specimens and viral lysate (USA-WA1/2020) were positive on the prototype immunoassay. Within-laboratory imprecision was ≤0.10 SD (<1.00 S/C) with a ≤10% CV (≥1.00 S/C). Assay reagents were stable on board the instrument for 14 days. No high-dose hook effect was observed with a SARS-CoV-2 stock of Ct 13.0 (RLU>1.0 × 106). No interference was observed from mucin, whole blood, 12 drugs, and more than 20 cross-reactants. While specimen stability was limited at room temperature for specimens with or without viral inactivation, a single freeze/thaw cycle or long-term storage (>30 days) at -20 °C did not adversely impact specimen stability or assay performance. Specificity of the prototype SARS-CoV-2 antigen immunoassay was ≥98.5% and sensitivity was ≥89.5% across two ARCHITECT instruments. Assay sensitivity was inversely correlated with Ct and was similar to that reported for the Roche Elecsys® SARS-CoV-2 Ag immunoassay. CONCLUSIONS: The prototype SARS-CoV-2 antigen ARCHITECT immunoassay is sensitive and specific for detection of SARS-CoV-2 in nasal and nasopharyngeal specimens. Endogenous proteases in mucus may degrade the target antigen, which limits specimen storage and transport times and complicates assay workflow.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sensibilidade e Especificidade , Teste para COVID-19 , Imunoensaio
3.
Biotechniques ; 73(3): 136-141, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36004516

RESUMO

Mutations in the nucleocapsid of SARS-CoV-2 may interfere with antigen detection by diagnostic tests. We used several methods to evaluate the effect of various SARS-CoV-2 nucleocapsid mutations on the performance of the Panbio™ and BinaxNOW™ lateral flow rapid antigen tests and a prototype high-throughput immunoassay that utilizes Panbio antibodies. Variant detection was also evaluated by immunoblot and BIAcore™ assay. A panel of 23 recombinant nucleocapsid antigens (rAgs) were produced that included mutations found in circulating SARS-CoV-2 variants, including variants of concern. All mutant rAgs were detected by all assays, at a sensitivity equivalent to wild-type control (Wuhan strain). Thus, using a rAg approach, we found that the SARS-CoV-2 nucleocapsid mutations examined do not directly impact antigen detection or antigen assay performance.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/genética , Teste para COVID-19 , Testes Diagnósticos de Rotina , Humanos , Mutação , Nucleocapsídeo/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade
4.
ACS Med Chem Lett ; 9(6): 546-551, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29937980

RESUMO

Protein thermal shift assays (TSAs) provide a means for characterizing target engagement through ligand-induced thermal stabilization. Although these assays are widely utilized for screening libraries and validating hits in drug discovery programs, they can impose encumbering operational requirements, such as the availability of purified proteins or selective antibodies. Appending the target protein with a small luciferase (NanoLuc) allows coupling of thermal denaturation with luminescent output, providing a rapid and sensitive means for assessing target engagement in compositionally complex environments such as permeabilized cells. The intrinsic thermal stability of NanoLuc is greater than mammalian proteins, and our results indicate that the appended luciferase does not alter thermal denaturation of the target protein. We have successfully applied the NanoLuc luciferase thermal shift assay (NaLTSA) to several clinically relevant protein families, including kinases, bromodomains, and histone deacetylases. We have also demonstrated the suitability of this assay method for library screening and compound profiling.

5.
Cell Chem Biol ; 25(2): 206-214.e11, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174542

RESUMO

For kinase inhibitors, intracellular target selectivity is fundamental to pharmacological mechanism. Although a number of acellular techniques have been developed to measure kinase binding or enzymatic inhibition, such approaches can fail to accurately predict engagement in cells. Here we report the application of an energy transfer technique that enabled the first broad-spectrum, equilibrium-based approach to quantitatively profile target occupancy and compound affinity in live cells. Using this method, we performed a selectivity profiling for clinically relevant kinase inhibitors against 178 full-length kinases, and a mechanistic interrogation of the potency offsets observed between cellular and biochemical analysis. For the multikinase inhibitor crizotinib, our approach accurately predicted cellular potency and revealed improved target selectivity compared with biochemical measurements. Due to cellular ATP, a number of putative crizotinib targets are unexpectedly disengaged in live cells at a clinically relevant drug dose.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sobrevivência Celular , Relação Dose-Resposta a Droga , Transferência de Energia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Espectrometria de Massas , Estrutura Molecular , Fosfotransferases/metabolismo , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
Nat Commun ; 6: 10091, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631872

RESUMO

The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.


Assuntos
Células/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência/métodos , Inibidores de Histona Desacetilases/química , Preparações Farmacêuticas/química , Proliferação de Células , Células/química , Células/citologia , Células HeLa , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Luminescência
7.
Curr Chem Genomics ; 6: 55-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23248739

RESUMO

Our fundamental understanding of proteins and their biological significance has been enhanced by genetic fusion tags, as they provide a convenient method for introducing unique properties to proteins so that they can be examinedin isolation. Commonly used tags satisfy many of the requirements for applications relating to the detection and isolation of proteins from complex samples. However, their utility at low concentration becomes compromised if the binding affinity for a detection or capture reagent is not adequate to produce a stable interaction. Here, we describe HaloTag® (HT7), a genetic fusion tag based on a modified haloalkane dehalogenase designed and engineered to overcome the limitation of affinity tags by forming a high affinity, covalent attachment to a binding ligand. HT7 and its ligand have additional desirable features. The tag is relatively small, monomeric, and structurally compatible with fusion partners, while the ligand is specific, chemically simple, and amenable to modular synthetic design. Taken together, the design features and molecular evolution of HT7 have resulted in a superior alternative to common tags for the overexpression, detection, and isolation of target proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...