Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 9(6): 546-551, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29937980

RESUMO

Protein thermal shift assays (TSAs) provide a means for characterizing target engagement through ligand-induced thermal stabilization. Although these assays are widely utilized for screening libraries and validating hits in drug discovery programs, they can impose encumbering operational requirements, such as the availability of purified proteins or selective antibodies. Appending the target protein with a small luciferase (NanoLuc) allows coupling of thermal denaturation with luminescent output, providing a rapid and sensitive means for assessing target engagement in compositionally complex environments such as permeabilized cells. The intrinsic thermal stability of NanoLuc is greater than mammalian proteins, and our results indicate that the appended luciferase does not alter thermal denaturation of the target protein. We have successfully applied the NanoLuc luciferase thermal shift assay (NaLTSA) to several clinically relevant protein families, including kinases, bromodomains, and histone deacetylases. We have also demonstrated the suitability of this assay method for library screening and compound profiling.

2.
Cell Chem Biol ; 25(2): 206-214.e11, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174542

RESUMO

For kinase inhibitors, intracellular target selectivity is fundamental to pharmacological mechanism. Although a number of acellular techniques have been developed to measure kinase binding or enzymatic inhibition, such approaches can fail to accurately predict engagement in cells. Here we report the application of an energy transfer technique that enabled the first broad-spectrum, equilibrium-based approach to quantitatively profile target occupancy and compound affinity in live cells. Using this method, we performed a selectivity profiling for clinically relevant kinase inhibitors against 178 full-length kinases, and a mechanistic interrogation of the potency offsets observed between cellular and biochemical analysis. For the multikinase inhibitor crizotinib, our approach accurately predicted cellular potency and revealed improved target selectivity compared with biochemical measurements. Due to cellular ATP, a number of putative crizotinib targets are unexpectedly disengaged in live cells at a clinically relevant drug dose.


Assuntos
Trifosfato de Adenosina/metabolismo , Fosfotransferases/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sobrevivência Celular , Relação Dose-Resposta a Droga , Transferência de Energia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Espectrometria de Massas , Estrutura Molecular , Fosfotransferases/metabolismo , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
3.
Nat Commun ; 6: 10091, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26631872

RESUMO

The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.


Assuntos
Células/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência/métodos , Inibidores de Histona Desacetilases/química , Preparações Farmacêuticas/química , Proliferação de Células , Células/química , Células/citologia , Células HeLa , Histona Desacetilase 1/química , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Luciferases/química , Luciferases/genética , Luciferases/metabolismo , Luminescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...