Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.000
Filtrar
1.
Heliyon ; 10(9): e30505, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726194

RESUMO

FERMT2 has been identified as a participant in integrin-linked kinase signaling pathways, influencing epithelial-mesenchymal transition and thereby affecting tumor initiation, progression, and invasion. While the character of FERMT2 in the tumor microenvironment (TME) as well as its implications for immunotherapy remain unclear. Thus, we conducted a comprehensive analysis to assess the prognostic significance of FERMT2 using Kaplan-Meier analysis. In addition, we employed enrichment analysis to uncover potential underlying molecular mechanisms. Using "Immunedeconv" package, we evaluated the immune characteristics of FERMT2 within TME. Furthermore, we determined the expression levels of FERMT2 in various cell types within TME, based on single-cell sequencing data. To confirm the co-expression of FERMT2 and markers of cancer-associated fibroblasts (CAFs), we performed multiplex immunofluorescence staining on tissue paraffin sections across various cancer types. Our analysis disclosed a significant correlation between elevated FERMT2 expression and unfavorable prognosis in specific cancer types. Furthermore, we identified a strong correlation between FERMT2 expression and diverse immune-related factors, including immune checkpoint molecules, immune cell infiltration, microsatellite instability (MSI), and tumor mutational burden (TMB). Additionally, there was a significant correlation between FERMT2 expression and immune-related pathways, particularly those associated with activating, migrating, and promoting the growth of fibroblasts in diverse cancer types. Interestingly, we observed consistent co-expression of FERMT2 in both malignant tumor cells and stromal cells, particularly within CAFs. Notably, our findings also indicated that FERMT2, in particular, exhibited elevated expression levels within tumor tissues and co-expressed with α-SMA in CAFs based on the multiplex immunofluorescence staining results.

2.
Sensors (Basel) ; 24(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733039

RESUMO

The calculation of land surface temperatures (LSTs) via low-altitude thermal infrared remote (TIR) sensing images at a block scale is gaining attention. However, the accurate calculation of LSTs requires a precise determination of the range of various underlying surfaces in the TIR images, and existing approaches face challenges in effectively segmenting the underlying surfaces in the TIR images. To address this challenge, this study proposes a deep learning (DL) methodology to complete the instance segmentation and quantification of underlying surfaces through the low-altitude TIR image dataset. Mask region-based convolutional neural networks were utilized for pixel-level classification and segmentation with an image dataset of 1350 annotated TIR images of an urban rail transit hub with a complex distribution of underlying surfaces. Subsequently, the hyper-parameters and architecture were optimized for the precise classification of the underlying surfaces. The algorithms were validated using 150 new TIR images, and four evaluation indictors demonstrated that the optimized algorithm outperformed the other algorithms. High-quality segmented masks of the underlying surfaces were generated, and the area of each instance was obtained by counting the true-positive pixels with values of 1. This research promotes the accurate calculation of LSTs based on the low-altitude TIR sensing images.

3.
Opt Lett ; 49(9): 2273-2276, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691697

RESUMO

As a complex anisotropic medium, variation in birefringence within biological tissues is closely associated with numerous physiological behaviors and phenomena. In this Letter, we propose a polarization feature fusion method and corresponding polarimetric parameters, which exhibit excellent performance of capturing the birefringence dynamic variation process in complex anisotropic media. By employing the feature fusion method, we combine and transform polarization basis parameters (PBPs) to derive fused polarization feature parameters (FPPs) with explicit expressions. Subsequently, we conduct Monte Carlo (MC) simulation to demonstrate the effectiveness of the proposed FPPs from two variation dimensions of birefringence direction θ and modulus Δn. Leveraging mathematical modeling and linear transformations, we investigate and abstract their response patterns concerning θ and Δn. Finally, the experiments confirm that the FPPs show superior adaptability and interpretability in characterizing the birefringence dynamic process of turbid media. The findings presented in this study provide new, to the best of our knowledge, methodological insights of information extraction for computational polarimetry in biomedical research.

4.
Environ Res ; 252(Pt 4): 119055, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710429

RESUMO

Application of biochar and inoculation with specific microbial strains offer promising approaches for addressing atrazine contamination in agricultural soils. However, determining the optimal method necessitates a comprehensive understanding of their effects under similar conditions. This study aimed to evaluate the effectiveness of biochar and Paenarthrobacter sp. AT5, a bacterial strain known for its ability to degrade atrazine, in reducing atrazine-related risks to soybean crops and influencing bacterial communities. Both biochar and strain AT5 significantly improved atrazine degradation in both planted and unplanted soils, with the most substantial reduction observed in soils treated with strain AT5. Furthermore, bioaugmentation with strain AT5 outperformed biochar in enhancing soybean growth, photosynthetic pigments, and antioxidant defenses. While biochar promoted higher soil bacterial diversity compared to strain AT5, the latter selectively enriched specific bacterial populations. Additionally, soil inoculated with strain AT5 displayed a notable increase in the abundance of key genes associated with atrazine degradation (trzN, atzB, and atzC), surpassing the effects observed with biochar addition, thus highlighting its effectiveness in mitigating atrazine risks in soil.

5.
Faraday Discuss ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766758

RESUMO

The exploration of the fundamental formation mechanisms of polycyclic aromatic hydrocarbons (PAHs) is crucial for the understanding of molecular mass growth processes leading to two- and three-dimensional carbonaceous nanostructures (nanosheets, graphenes, nanotubes, buckyballs) in extraterrestrial environments (circumstellar envelopes, planetary nebulae, molecular clouds) and combustion systems. While key studies have been conducted exploiting traditional, high-temperature mechanisms such as the hydrogen abstraction-acetylene addition (HACA) and phenyl addition-dehydrocyclization (PAC) pathways, the complexity of extreme environments highlights the necessity of investigating chemically diverse mass growth reaction mechanisms leading to PAHs. Employing the crossed molecular beams technique coupled with electronic structure calculations, we report on the gas-phase synthesis of phenanthrene (C14H10)-a three-ring, 14π benzenoid PAH-via a phenylethynyl addition-cyclization-aromatization mechanism, featuring bimolecular reactions of the phenylethynyl radical (C6H5CC, X2A1) with benzene (C6H6) under single collision conditions. The dynamics involve a phenylethynyl radical addition to benzene without entrance barrier leading eventually to phenanthrene via indirect scattering dynamics through C14H11 intermediates. The barrierless nature of reaction allows rapid access to phenanthrene in low-temperature environments such as cold molecular clouds which can reach temperatures as low as 10 K. This mechanism constitutes a unique, low-temperature framework for the formation of PAHs as building blocks in molecular mass growth processes to carbonaceous nanostructures in extraterrestrial environments thus affording critical insight into the low-temperature hydrocarbon chemistry in our universe.

6.
Sci Total Environ ; 931: 172885, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697546

RESUMO

Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Eliminação de Resíduos/métodos , Resíduos Sólidos , Reatores Biológicos
7.
Materials (Basel) ; 17(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612223

RESUMO

Following publication, concerns relating to the relevance of a number of citations recommend by a peer reviewer were brought to the attention of the Editorial Office [...].

8.
Small ; : e2401464, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38616766

RESUMO

Organic-inorganic hybrid linear and nonlinear optical (NLO) materials have received increasingly wide spread attention in recent years. Herein, the first hybrid noncentrosymmetric (NCS) borophosphate, (C5H6N)2B2O(HPO4)2 (4PBP), is rationally designed and synthesized by a covalent-linkage strategy. 4-pyridyl-boronic acid (4 PB) is considered as a bifunctional unit, which may effectively improve the optical properties and stability of the resultant material. On the one hand, 4 PB units are covalently linked with PO3(OH) groups via strong B-O-P connections, which significantly enhances the thermal stability of 4PBP (decomposition at 321, vs lower 200 °C of most of hybrid materials). On the other hand, the planar π-conjugated C5H6N units and their uniform layered arrangements represent large structural anisotropy and hyperpolarizability, achieving the largest birefringence (0.156 @ 546 nm) in the reported borophosphates and a second-harmonic generation response (0.7 × KDP). 4PBP also exhibits a wide transparency range (0.27-1.50 µm). This work not only provides a promising birefringent material, but also offers a practical covalent-attachment strategy for the rational design of new high-performance optical materials.

10.
Talanta ; 275: 126109, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38648686

RESUMO

To investigate the metabolic alterations in maternal individuals with fetal congenital heart disease (FCHD), establish the FCHD diagnostic models, and assess the performance of these models, we recruited two batches of pregnant women. By metabolomics analysis using Ultra High-performance Liquid Chromatography-Mass/Mass (UPLC-MS/MS), a total of 36 significantly altered metabolites (VIP >1.0) were identified between FCHD and non-FCHD groups. Two logistic regression models and four support vector machine (SVM) models exhibited strong performance and clinical utility in the training set (area under the curve (AUC) = 1.00). The convolutional neural network (CNN) model also demonstrated commendable performance and clinical utility (AUC = 0.89 in the training set). Notably, in the validation set, the performance of the CNN model (AUC = 0.66, precision = 0.714) exhibited better robustness than the six models above (AUC≤0.50). In conclusion, the CNN model based on pseudo-MS images holds promise for real-world and clinical applications due to its better repeatability.

12.
Water Res ; 255: 121524, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569360

RESUMO

In the context of circular economy and global shortage of phosphorus (P) fertilizer production, it is crucial to effectively recover P during the treatment and disposal of sewage sludge (SS). Although thermal treatment of SS has been widely applied, a targeted P reclamation route is not yet well established. This study has comprehensively investigated and compared the physicochemical properties of SS and solid residues (hydrochar (HC), biochar (BC), sewage sludge ash (SSA), hydrochar ash (HCA), and biochar ash (BCA)) after application of three typical thermal treatment techniques (i.e., hydrothermal carbonization (180‒240 °C), pyrolysis (400‒600 °C) and combustion (850 ℃). P speciation and transformation during thermal processes were extensively explored followed by a rational proposal of effective P reclamation routes. Specifically, thermal processing decomposed organic P and converted non-apatite P to apatite P. Orthophosphate-P was found to be the main species in all samples. Physicochemical properties of the resulting thermal-derived products were significantly affected by the thermal techniques applied, thereby determining their feasibility for different P reclamation purposes. In particular, ash is not recommended for agricultural use due to higher harmful metals content, while acid leaching can be an alternative solution to synthesize non-Fe-containing P products because of the lower co-dissolved Fe content in the leachate. HC and BC offer the option for synthesis of Fe containing products. Eventually, HC and BC demonstrate great potential for agriculture application, however, a comprehensive risk assessment should be conducted before their real-world applications.

13.
Environ Res ; 252(Pt 2): 118919, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631468

RESUMO

The escalation of global water pollution due to emerging pollutants has gained significant attention. To address this issue, catalytic peroxymonosulfate (PMS) activation technology has emerged as a promising treatment approach for effectively decontaminating a wide range of pollutants. Recently, modified biochar has become an increasingly attractive as PMS activator. Metal-heteroatom-co-doped biochar (MH-BC) has emerged as a promising catalyst that can provide enhanced performance over heteroatom-doped and metal-doped biochar due to the synergism between metal and heteroatom in promoting PMS activation. Therefore, this review aims to discuss the fabrication pathways (i.e., internal vs external doping and pre-vs post-modification) and key parameters (i.e., source of precursors, synthesis methods, and synthesis conditions) affecting the performance of MH-BC as PMS activator. Subsequently, an overview of all the possible PMS activation pathways by MH-BC is provided. Subsequently, Also, the detection, identification, and quantification of several reactive species (such as, •OH, SO4•-, O2•-, 1O2, and high valent oxo species) generated in the catalytic PMS system by MH-BC are also evaluated. Lastly, the underlying challenges associated with poor stability, the lack of understanding regarding the interaction between metal and heteroatom during PMS activation and quantification of radicals in multi-ROS system are also deliberated.

14.
J Hazard Mater ; 470: 134179, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565011

RESUMO

Microplastics (MPs) and fluoxetine are ubiquitous emerging pollutants in aquatic environments that may interact with each other due to the carrier effects of MPs, posing unpredictable risks to non-target organisms. However, limited studies have focused on the carrier effects of MPs in the aquatic food chain. This study evaluated the influences of polystyrene MPs on the trophic transfer and biotoxicity of fluoxetine in a simple food chain composed of brine shrimp (Artemia nauplii) and zebrafish (Danio rerio). The finding reveals that carrier effects of MPs enhanced the accumulation of waterborne fluoxetine in brine shrimp, but suppressed that in zebrafish due to the distinct retention times. The accumulated fluoxetine in shrimp was further transferred to fish through the food chain, which was alleviated by MPs due to their cleaning effects. In addition, the specific neurotransmission biotoxicity in fish induced by fluoxetine was mitigated by MPs, whilst the oxidative damage, apoptosis, and immune responses in zebrafish were reversely enhanced by MPs due to the stimulating effect. These findings highlight the alleviating effects of MPs on the trophic transfer and specific biotoxicity of fluoxetine in the food chain, providing new insights into the carrier effects of MPs in aquatic environments in the context of increasing global MP pollution.


Assuntos
Artemia , Fluoxetina , Cadeia Alimentar , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fluoxetina/toxicidade , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poliestirenos/toxicidade , Artemia/efeitos dos fármacos
15.
Cell Cycle ; : 1-18, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662954

RESUMO

Cholesteatoma is a common disease of the middle ear. Currently, surgical removal is the only treatment option and patients face a high risk of relapse. The molecular basis of cholesteatoma remains largely unknown. Here, we show that Osteopontin (OPN), a predominantly secreted protein, plays a crucial role in the development of middle ear cholesteatoma. Global transcriptome analysis revealed the loss of epithelial features and an enhanced immune response in human cholesteatoma tissues. Quantitative RT-PCR and immunohistochemical staining of middle ear cholesteatoma validated the reduced expression of epithelial markers, as well as the elevated expression of mesenchymal markers including Vimentin and Fibronectin, but not N-Cadherin, α-smooth muscle actin (α-SMA) or ferroptosis suppressor protein 1 (FSP1), indicating a partial epithelial-mesenchymal transition (EMT) state. Besides, the expression of OPN was significantly elevated in human cholesteatoma tissues. Treatment with OPN promoted cell proliferation, survival and migration and led to a partial EMT in immortalized human keratinocyte cells. Importantly, blockade of OPN signaling could remarkably improve the cholesteatoma-like symptoms in SD rats. Our mechanistic study demonstrated that the AKT-zinc finger E-box binding homeobox 2 (ZEB2) axis mediated the effects of OPN. Overall, these findings suggest that targeting the OPN signaling represents a promising strategy for the treatment of middle ear cholesteatoma.

16.
Biosensors (Basel) ; 14(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667201

RESUMO

Polarization imaging and sensing techniques have shown great potential for biomedical and clinical applications. As a novel optical biosensing technology, Mueller matrix polarimetry can provide abundant microstructural information of tissue samples. However, polarimetric aberrations, which lead to inaccurate characterization of polarization properties, can be induced by uneven biomedical sample surfaces while measuring Mueller matrices with complex spatial illuminations. In this study, we analyze the detailed features of complex spatial illumination-induced aberrations by measuring the backscattering Mueller matrices of experimental phantom and tissue samples. We obtain the aberrations under different spatial illumination schemes in Mueller matrix imaging. Furthermore, we give the corresponding suggestions for selecting appropriate illumination schemes to extract specific polarization properties, and then provide strategies to alleviate polarimetric aberrations by adjusting the incident and detection angles in Mueller matrix imaging. The optimized scheme gives critical criteria for the spatial illumination scheme selection of non-collinear backscattering Mueller matrix measurements, which can be helpful for the further development of quantitative tissue polarimetric imaging and biosensing.


Assuntos
Técnicas Biossensoriais , Imagens de Fantasmas , Humanos
17.
Int Immunopharmacol ; 132: 111970, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38608472

RESUMO

OBJECTIVES: As antibiotics become more prevalent, accuracy and safety are critical. Moxifloxacin (MXF) have been reported to have immunomodulatory effects on a variety of immune cells and even anti-proliferative and pro-apoptotic effects, but the mechanism of action is not fully clear. METHODS: Peripheral blood mononuclear cells (PBMC) from experimental groups of healthy adults (n = 3) were treated with MXF (10ug/ml) in vitro for 24 h. Single-cell sequencing was performed to investigate differences in the response of each immune cell to MXF. Flow cytometry determined differential gene expression in subsets of most damaged NK cells. Pseudo-time analysis identified drivers that influence MXF-stimulated cell differentiation. Detection of mitochondrial DNA and its involvement in the mitochondrial respiratory chain pathway clarifies the origin of MXF-induced stress injury. RESULTS: Moxifloxacin-environmental NK cells are markedly reduced: a new subset of NK cells emerges, and immediate-early-response genes in this subset indicate the presence of an early activation response. The inhibitory receptor-dominant subset shows enhanced activation, leading to increased expression of cytokines and chemokines. The near-mature subset showed greater cytotoxicity and the most pronounced cellular damage. CD56bright cells responded by antagonizing the regulation of activation and inhibitory signals, demonstrating a strong cleavage capacity. The severe depletion of mitochondrial genes was focused on apoptosis induced by the mitochondrial respiratory chain complex. CONCLUSION: NK cells exhibit heightened sensitivity to the MXF environment. Different NK subsets upregulate the expression of cytokines and chemokines through different activation pathways. Concurrently, MXF induces impairment of the mitochondrial oxidative phosphorylation system, culminating in apoptosis.


Assuntos
Apoptose , DNA Mitocondrial , Células Matadoras Naturais , Moxifloxacina , Moxifloxacina/farmacologia , Humanos , Apoptose/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Adulto , Células Cultivadas , Citocinas/metabolismo , Antibacterianos/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino
18.
Environ Sci Technol ; 58(17): 7469-7479, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38557082

RESUMO

Trivalent arsenicals such as arsenite (AsIII) and methylarsenite (MAsIII) are thought to be ubiquitous in flooded paddy soils and have higher toxicity than pentavalent forms. Fungi are widely prevalent in the rice rhizosphere, and the latter is considered a hotspot for As uptake. However, few studies have focused on alleviating As toxicity in paddy soils using fungi. In this study, we investigated the mechanism by which the protein TaGlo1, derived from the As-resistant fungal strain Trichoderma asperellum SM-12F1, mitigates AsIII and MAsIII toxicity in paddy soils. Taglo1 gene expression in Escherichia coli BL21 conferred strong resistance to AsIII and MAsIII, while purified TaGlo1 showed a high affinity for AsIII and MAsIII. Three cysteine residues (Cys13, Cys18, and Cys71) play crucial roles in binding with AsIII, while only two (Cys13 and Cys18) play crucial roles for MAsIII binding. TaGlo1 had a stronger binding strength for MAsIII than AsIII. Importantly, up to 90.2% of the homologous TaGlo1 proteins originate from fungi by GenBank searching. In the rhizospheres of 14 Chinese paddy soils, Taglo1 was widely distributed and its gene abundance increased with porewater As. This study highlights the potential of fungi to mitigate As toxicity and availability in the soil-rice continuum and suggests future microbial strategies for bioremediation.


Assuntos
Poluentes do Solo , Solo , Solo/química , Arsenitos , Microbiologia do Solo , Oryza
19.
Cancer Lett ; 590: 216861, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583649

RESUMO

Immunotherapy represented by programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) monoclonal antibodies has led tumor treatment into a new era. However, the low overall response rate and high incidence of drug resistance largely damage the clinical benefits of existing immune checkpoint therapies. Recent studies correlate the response to PD-1/PD-L1 blockade with PD-L1 expression levels in tumor cells. Hence, identifying molecular targets and pathways controlling PD-L1 protein expression and stability in tumor cells is a major priority. In this study, we performed a Stress and Proteostasis CRISPR interference screening to identify PD-L1 positive modulators. Here, we identified TRAF6 as a critical regulator of PD-L1 in melanoma cells. As a non-conventional E3 ubiquitin ligase, TRAF6 is inclined to catalyze the synthesis and linkage of lysine-63 (K63) ubiquitin which is related to the stabilization of substrate proteins. Our results showed that suppression of TRAF6 expression down-regulates PD-L1 expression on the membrane surface of melanoma cells. We then used in vitro and in vivo assays to investigate the biological function and mechanism of TRAF6 and its downstream YAP1/TFCP2 signaling in melanoma. TRAF6 stabilizes YAP1 by K63 poly-ubiquitination modification, subsequently promoting the formation of YAP1/TFCP2 transcriptional complex and PD-L1 transcription. Inhibition of TRAF6 by Bortezomib enhanced cytolytic activity of CD8+ T cells by reduction of endogenous PD-L1. Notably, Bortezomib enhances anti-tumor immunity to an extent comparable to anti-PD-1 therapies with no obvious toxicity. Our findings reveal the potential of inhibiting TRAF6 to stimulate internal anti-tumor immunological effect for TRAF6-PD-L1 overexpressing cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antígeno B7-H1 , Melanoma , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/patologia , Melanoma/imunologia , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Regulação Neoplásica da Expressão Gênica , Ubiquitinação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
20.
Environ Pollut ; 351: 123969, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615835

RESUMO

The issue of cadmium (Cd) contamination in alkaline soils is escalating, necessitating the prompt implementation of effective passivation strategies. Biochar has gained significant attention for its potential in immobilizing heavy metals; however, the suitability of biochar as a remediation material and its micro-scale interaction mechanisms with Cd under alkaline conditions remain unclear. Rape straw (RS) were pyrolyzed at 400 °C (RB400) and 700 °C (RB700) to produce biochar. Adsorption and soil incubation experiments were carried out to assess the feasibility of using rape straw derived biochar pyrolyze at different temperatures and understanding their remediation mechanisms in alkaline environments. The sorption capacity for Cd immobilization was evaluated using sorption isotherms, revealing that RB700 exhibited enhanced Cd sorption performance with a maximum sorption capacity of 119.33 mg g-1 calculated from the Langmuir isotherm equation at pH 8. Cd L3-edge X-ray absorption near-edge structure (XANES) spectroscopy analysis confirmed that the dominant sorption species of Cd were organic Cd in RB400, with CdCO3 precipitation increased to 73.9% in RB700. Solid-state 13C nuclear magnetic resonance (13C-NMR) spectroscopy demonstrated that aromatic and carboxyl C functional groups are involved in the organic sorption of Cd through complexation and Cd2+-π interactions in alkaline solutions. The precipitation of CdCO3 in RB700 may resulted in a more effective passivation effect compared to RB400, leading to a significant 15.54% reduction in the DTPA-Cd content in Cd-contaminated soil. These findings highlight the effective Cd passivation Cd in alkaline environments by rape straw derived biochar, providing new molecular insights into the Cd retention mechanism of biochar. Furthermore, it presents novel ideas for improving remediation approaches for alkaline Cd-contaminated soils.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...