Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 43: 103630, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38875745

RESUMO

Past work has shown that people with schizophrenia exhibit more cross-subject heterogeneity in their functional connectivity patterns. However, it remains unclear whether specific brain networks are implicated, whether common confounds could explain the results, or whether task activations might also be more heterogeneous. Unambiguously establishing the existence and extent of functional heterogeneity constitutes a first step toward understanding why it emerges and what it means clinically. METHODS: We first leveraged data from the HCP Early Psychosis project. Functional connectivity (FC) was extracted from 718 parcels via principal components regression. Networks were defined via a brain network partition (Ji et al., 2019). We also examined an independent data set with controls, later-stage schizophrenia patients, and ADHD patients during rest and during a working memory task. We quantified heterogeneity by averaging the Pearson correlation distance of each subject's FC or task activity pattern to that of every other subject of the same cohort. RESULTS: Affective and non-affective early psychosis patients exhibited more cross-subject whole-brain heterogeneity than healthy controls (ps < 0.001, Hedges' g > 0.74). Increased heterogeneity could be found in up to seven networks. In-scanner motion, medication, nicotine, and comorbidities could not explain the results. Later-stage schizophrenia patients exhibited heterogeneous connectivity patterns and task activations compared to ADHD and control subjects. Interestingly, individual connection weights, parcel-wise task activations, and network averages thereof were not more variable in patients, suggesting that heterogeneity becomes most obvious over large-scale patterns. CONCLUSION: Whole-brain cross-subject functional heterogeneity characterizes psychosis during rest and task. Developmental and pathophysiological consequences are discussed.

2.
Hum Brain Mapp ; 44(18): 6418-6428, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37853935

RESUMO

Current behavioural treatment of obsessive-compulsive disorder (OCD) is informed by fear conditioning and involves iteratively re-evaluating previously threatening stimuli as safe. However, there is limited research investigating the neurobiological response to conditioning and reversal of threatening stimuli in individuals with OCD. A clinical sample of individuals with OCD (N = 45) and matched healthy controls (N = 45) underwent functional magnetic resonance imaging. While in the scanner, participants completed a well-validated fear reversal task and a resting-state scan. We found no evidence for group differences in task-evoked brain activation or functional connectivity in OCD. Multivariate analyses encompassing all participants in the clinical and control groups suggested that subjective appraisal of threatening and safe stimuli were associated with a larger difference in brain activity than the contribution of OCD symptoms. In particular, we observed a brain-behaviour continuum whereby heightened affective appraisal was related to increased bilateral insula activation during the task (r = 0.39, pFWE = .001). These findings suggest that changes in conditioned threat-related processes may not be a core neurobiological feature of OCD and encourage further research on the role of subjective experience in fear conditioning.


Assuntos
Transtorno Obsessivo-Compulsivo , Humanos , Medo/fisiologia , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Insular , Mapeamento Encefálico
3.
Brain ; 146(4): 1322-1327, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36380526

RESUMO

The diagnosis of obsessive-compulsive disorder (OCD) has been linked with changes in frontostriatal resting-state connectivity. However, replication of prior findings is lacking, and the mechanistic understanding of these effects is incomplete. To confirm and advance knowledge on changes in frontostriatal functional connectivity in OCD, participants with OCD and matched healthy controls underwent resting-state functional, structural and diffusion neuroimaging. Functional connectivity changes in frontostriatal systems were here replicated in individuals with OCD (n = 52) compared with controls (n = 45). OCD participants showed greater functional connectivity (t = 4.3, PFWE = 0.01) between the nucleus accumbens (NAcc) and the orbitofrontal cortex (OFC) but lower functional connectivity between the dorsal putamen and lateral prefrontal cortex (t = 3.8, PFWE = 0.04) relative to controls. Computational modelling suggests that NAcc-OFC connectivity changes reflect an increased influence of NAcc over OFC activity and reduced OFC influence over NAcc activity (posterior probability, Pp > 0.66). Conversely, dorsal putamen showed reduced modulation over lateral prefrontal cortex activity (Pp > 0.90). These functional deregulations emerged on top of a generally intact anatomical substrate. We provide out-of-sample replication of opposite changes in ventro-anterior and dorso-posterior frontostriatal connectivity in OCD and advance the understanding of the neural underpinnings of these functional perturbations. These findings inform the development of targeted therapies normalizing frontostriatal dynamics in OCD.


Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Núcleo Accumbens , Putamen/diagnóstico por imagem , Mapeamento Encefálico
4.
Artigo em Inglês | MEDLINE | ID: mdl-36344036

Assuntos
Encéfalo , Humanos
5.
Nat Commun ; 13(1): 4, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013147

RESUMO

The emergence of distributed patterns of neural activity supporting brain functions and behavior can be understood by study of the brain's low-dimensional topology. Functional neuroimaging demonstrates that brain activity linked to adaptive behavior is constrained to low-dimensional manifolds. In human participants, we tested whether these low-dimensional constraints preserve working memory performance following local neuronal perturbations. We combined multi-session functional magnetic resonance imaging, non-invasive transcranial magnetic stimulation (TMS), and methods translated from the fields of complex systems and computational biology to assess the functional link between changes in local neural activity and the reshaping of task-related low dimensional trajectories of brain activity. We show that specific reconfigurations of low-dimensional trajectories of brain activity sustain effective working memory performance following TMS manipulation of local activity on, but not off, the space traversed by these trajectories. We highlight an association between the multi-scale changes in brain activity underpinning cognitive function.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Cognição/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Neuroimagem Funcional/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Memória de Curto Prazo/fisiologia , Estimulação Magnética Transcraniana/métodos
6.
Sci Adv ; 7(29)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34261649

RESUMO

Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow models accurately predict aberrant cognitive activations across multiple brain networks. Within the same framework, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-scale network mechanism contributing to cognitive dysfunction in SZ.


Assuntos
Esquizofrenia , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos
7.
Mol Psychiatry ; 26(8): 4036-4045, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31666679

RESUMO

Adults with childhood-onset attention-deficit hyperactivity disorder (ADHD) show altered whole-brain connectivity. However, the relationship between structural and functional brain abnormalities, the implications for the development of life-long debilitating symptoms, and the underlying mechanisms remain uncharted. We recruited a unique sample of 80 medication-naive adults with a clinical diagnosis of childhood-onset ADHD without psychiatric comorbidities, and 123 age-, sex-, and intelligence-matched healthy controls. Structural and functional connectivity matrices were derived from diffusion spectrum imaging and multi-echo resting-state functional MRI data. Hub, feeder, and local connections were defined using diffusion data. Individual-level measures of structural connectivity and structure-function coupling were used to contrast groups and link behavior to brain abnormalities. Computational modeling was used to test possible neural mechanisms underpinning observed group differences in the structure-function coupling. Structural connectivity did not significantly differ between groups but, relative to controls, ADHD showed a reduction in structure-function coupling in feeder connections linking hubs with peripheral regions. This abnormality involved connections linking fronto-parietal control systems with sensory networks. Crucially, lower structure-function coupling was associated with higher ADHD symptoms. Results from our computational model further suggest that the observed structure-function decoupling in ADHD is driven by heterogeneity in neural noise variability across brain regions. By highlighting a neural cause of a clinically meaningful breakdown in the structure-function relationship, our work provides novel information on the nature of chronic ADHD. The current results encourage future work assessing the genetic and neurobiological underpinnings of neural noise in ADHD, particularly in brain regions encompassed by fronto-parietal systems.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
8.
Neuroimage ; 222: 117224, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795658

RESUMO

Recent neuroimaging experiments have defined low-dimensional gradients of functional connectivity in the cerebral cortex that subserve a spectrum of capacities that span from sensation to cognition. Despite well-known anatomical connections to the cortex, the subcortical areas that support cortical functional organization have been relatively overlooked. One such structure is the thalamus, which maintains extensive anatomical and functional connections with the cerebral cortex across the cortical mantle. The thalamus has a heterogeneous cytoarchitecture, with at least two distinct cell classes that send differential projections to the cortex: granular-projecting 'Core' cells and supragranular-projecting 'Matrix' cells. Here we use high-resolution 7T resting-state fMRI data and the relative amount of two calcium-binding proteins, parvalbumin and calbindin, to infer the relative distribution of these two cell-types (Core and Matrix, respectively) in the thalamus. First, we demonstrate that thalamocortical connectivity recapitulates large-scale, low-dimensional connectivity gradients within the cerebral cortex. Next, we show that diffusely-projecting Matrix regions preferentially correlate with cortical regions with longer intrinsic fMRI timescales. We then show that the Core-Matrix architecture of the thalamus is important for understanding network topology in a manner that supports dynamic integration of signals distributed across the brain. Finally, we replicate our main results in a distinct 3T resting-state fMRI dataset. Linking molecular and functional neuroimaging data, our findings highlight the importance of the thalamic organization for understanding low-dimensional gradients of cortical connectivity.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Lobo Temporal/fisiopatologia , Tálamo/fisiopatologia , Adolescente , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos , Adulto Jovem
9.
Neuroimage ; 221: 117141, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32663642

RESUMO

Many studies have identified the role of localized and distributed cognitive functionality by mapping either local task-related activity or distributed functional connectivity (FC). However, few studies have directly explored the relationship between a brain region's localized task activity and its distributed task FC. Here we systematically evaluated the differential contributions of task-related activity and FC changes to identify a relationship between localized and distributed processes across the cortical hierarchy. We found that across multiple tasks, the magnitude of regional task-evoked activity was high in unimodal areas, but low in transmodal areas. In contrast, we found that task-state FC was significantly reduced in unimodal areas relative to transmodal areas. This revealed a strong negative relationship between localized task activity and distributed FC across cortical regions that was associated with the previously reported principal gradient of macroscale organization. Moreover, this dissociation corresponded to hierarchical cortical differences in the intrinsic timescale estimated from resting-state fMRI and region myelin content estimated from structural MRI. Together, our results contribute to a growing literature illustrating the differential contributions of a hierarchical cortical gradient representing localized and distributed cognitive processes.


Assuntos
Córtex Cerebral/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia , Análise e Desempenho de Tarefas , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Rede Nervosa/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
10.
Neuron ; 104(5): 849-855.e3, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31653463

RESUMO

Cognitive activity emerges from large-scale neuronal dynamics that are constrained to a low-dimensional manifold. How this low-dimensional manifold scales with cognitive complexity, and which brain regions regulate this process, are not well understood. We addressed this issue by analyzing sub-second high-field fMRI data acquired during performance of a task that systematically varied the complexity of cognitive reasoning. We show that task performance reconfigures the low-dimensional manifold and that deviations from these patterns relate to performance errors. We further demonstrate that individual differences in thalamic activity relate to reconfigurations of the low-dimensional architecture during task engagement.


Assuntos
Cognição/fisiologia , Núcleo Mediodorsal do Tálamo/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
11.
Neuroimage Clin ; 21: 101595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30473430

RESUMO

Cognitive reasoning is thought to require functional interactions between whole-brain networks. Such networks rely on both cerebral hemispheres, with the corpus callosum providing cross-hemispheric communication. Here we used high-field functional magnetic resonance imaging (7 T fMRI), a well validated cognitive task, and brain network analyses to investigate the functional networks underlying cognitive reasoning in individuals with corpus callosum dysgenesis (CCD), an anatomical abnormality that affects the corpus callosum. Participants with CCD were asked to solve cognitive reasoning problems while their brain activity was measured using fMRI. The complexity of these problems was parametrically varied by changing the complexity of relations that needed to be established between shapes within each problem matrix. Behaviorally, participants showed a typical reduction in task performance as problem complexity increased. Task-evoked neural activity was observed in brain regions known to constitute two key cognitive control systems: the fronto-parietal and cingulo-opercular networks. Under low complexity demands, network topology and the patterns of local neural activity in the CCD group closely resembled those observed in neurotypical controls. By contrast, when asked to solve more complex problems, participants with CCD showed a reduction in neural activity and connectivity within the fronto-parietal network. These complexity-induced, as opposed to resting-state, differences in functional network activity help resolve the apparent paradox between preserved network architecture found at rest in CCD individuals, and the heterogeneous deficits they display in response to cognitive task demands [preprint: https://doi.org/10.1101/312629].


Assuntos
Agenesia do Corpo Caloso/patologia , Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Feminino , Humanos , Inteligência/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Neurosci ; 37(35): 8399-8411, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28760864

RESUMO

Our capacity for higher cognitive reasoning has a measurable limit. This limit is thought to arise from the brain's capacity to flexibly reconfigure interactions between spatially distributed networks. Recent work, however, has suggested that reconfigurations of task-related networks are modest when compared with intrinsic "resting-state" network architecture. Here we combined resting-state and task-driven functional magnetic resonance imaging to examine how flexible, task-specific reconfigurations associated with increasing reasoning demands are integrated within a stable intrinsic brain topology. Human participants (21 males and 28 females) underwent an initial resting-state scan, followed by a cognitive reasoning task involving different levels of complexity, followed by a second resting-state scan. The reasoning task required participants to deduce the identity of a missing element in a 4 × 4 matrix, and item difficulty was scaled parametrically as determined by relational complexity theory. Analyses revealed that external task engagement was characterized by a significant change in functional brain modules. Specifically, resting-state and null-task demand conditions were associated with more segregated brain-network topology, whereas increases in reasoning complexity resulted in merging of resting-state modules. Further increments in task complexity did not change the established modular architecture, but affected selective patterns of connectivity between frontoparietal, subcortical, cingulo-opercular, and default-mode networks. Larger increases in network efficiency within the newly established task modules were associated with higher reasoning accuracy. Our results shed light on the network architectures that underlie external task engagement, and highlight selective changes in brain connectivity supporting increases in task complexity.SIGNIFICANCE STATEMENT Humans have clear limits in their ability to solve complex reasoning problems. It is thought that such limitations arise from flexible, moment-to-moment reconfigurations of functional brain networks. It is less clear how such task-driven adaptive changes in connectivity relate to stable, intrinsic networks of the brain and behavioral performance. We found that increased reasoning demands rely on selective patterns of connectivity within cortical networks that emerged in addition to a more general, task-induced modular architecture. This task-driven architecture reverted to a more segregated resting-state architecture both immediately before and after the task. These findings reveal how flexibility in human brain networks is integral to achieving successful reasoning performance across different levels of cognitive demand.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Pensamento/fisiologia , Adaptação Fisiológica/fisiologia , Adolescente , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Modelos Estatísticos , Descanso/fisiologia , Adulto Jovem
13.
Hum Brain Mapp ; 38(6): 3069-3080, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28342260

RESUMO

Functional magnetic resonance imaging (fMRI) studies have shown that neural activity fluctuates spontaneously between different states of global synchronization over a timescale of several seconds. Such fluctuations generate transient states of high and low correlation across distributed cortical areas. It has been hypothesized that such fluctuations in global efficiency might alter patterns of activity in local neuronal populations elicited by changes in incoming sensory stimuli. To test this prediction, we used a linear decoder to discriminate patterns of neural activity elicited by face and motion stimuli presented periodically while participants underwent time-resolved fMRI. As predicted, decoding was reliably higher during states of high global efficiency than during states of low efficiency, and this difference was evident across both visual and nonvisual cortical regions. The results indicate that slow fluctuations in global network efficiency are associated with variations in the pattern of activity across widespread cortical regions responsible for representing distinct categories of visual stimulus. More broadly, the findings highlight the importance of understanding the impact of global fluctuations in functional connectivity on specialized, stimulus driven neural processes. Hum Brain Mapp 38:3069-3080, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto , Face , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Dinâmica não Linear , Oxigênio/sangue , Fatores de Tempo
14.
Sci Rep ; 6: 32328, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561736

RESUMO

Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.


Assuntos
Inteligência/fisiologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Lobo Parietal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...