Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(39): e2303952, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37358068

RESUMO

Industrial biocatalysis plays an important role in the development of a sustainable economy, as enzymes can be used to synthesize an enormous range of complex molecules under environmentally friendly conditions. To further develop the field, intensive research is being conducted on process technologies for continuous flow biocatalysis in order to immobilize large quantities of enzyme biocatalysts in microstructured flow reactors under conditions that are as gentle as possible in order to realize efficient material conversions. Here, monodisperse foams consisting almost entirely of enzymes covalently linked via SpyCatcher/SpyTag conjugation are reported. The biocatalytic foams are readily available from recombinant enzymes via microfluidic air-in-water droplet formation, can be directly integrated into microreactors, and can be used for biocatalytic conversions after drying. Reactors prepared by this method show surprisingly high stability and biocatalytic activity. The physicochemical characterization of the new materials is described and exemplary applications in biocatalysis are shown using two-enzyme cascades for the stereoselective synthesis of chiral alcohols and the rare sugar tagatose.


Assuntos
Álcoois , Enzimas Imobilizadas , Biocatálise , Enzimas Imobilizadas/metabolismo , Enzimas
2.
ChemMedChem ; 17(19): e202200346, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35867055

RESUMO

Identifying the protein targets of drugs is an important but tedious process. Existing proteomic approaches enable unbiased target identification but lack the throughput needed to screen larger compound libraries. Here, we present a compound interaction screen on a photoactivatable cellulose membrane (CISCM) that enables target identification of several drugs in parallel. To this end, we use diazirine-based undirected photoaffinity labeling (PAL) to immobilize compounds on cellulose membranes. Functionalized membranes are then incubated with protein extract and specific targets are identified via quantitative affinity purification and mass spectrometry. CISCM reliably identifies known targets of natural products in less than three hours of analysis time per compound. In summary, we show that combining undirected photoimmobilization of compounds on cellulose with quantitative interaction proteomics provides an efficient means to identify the targets of natural products.


Assuntos
Produtos Biológicos , Proteômica , Celulose , Diazometano , Espectrometria de Massas/métodos , Proteínas/metabolismo , Proteômica/métodos
3.
Adv Mater ; 33(23): e2100117, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955580

RESUMO

Liquids are traditionally handled and stored in solid vessels. Solid walls are not functional, adaptive, or self-repairing, and are difficult to remove and re-form. Liquid walls can overcome these limitations, but cannot form free-standing 3D walls. Herein, a liquid analogue of a well, termed a "liquid well" is introduced. Water tethered to a surface with hydrophobic-hydrophilic core-shell patterns forms stable liquid walls capable of containing another immiscible fluid, similar to fluid confinement by solid walls. Liquid wells with different liquids, volumes, and shapes are prepared and investigated by confocal and Raman microscopy. The confinement of various low-surface-tension liquids (LSTLs) on surfaces by liquid wells can compete with or be complementary to existing confinement strategies using perfluorinated surfaces, for example, in terms of the shape and height of the confined LSTLs. Liquid wells show unique properties arising from their liquid aggregate state: they are self-healing, dynamic, and functional, that is, not restricted to a passive confining role. Water walls can be easily removed and re-formed, making them interesting as sacrificial templates. This is demonstrated in a process termed water-templated polymerization (WTP). Numerical phase-field model simulations are performed to scrutinize the conditions required for the formation of stable liquid wells.

4.
Phys Chem Chem Phys ; 23(13): 7696-7702, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32643740

RESUMO

Detailed information on structural, chemical, and physical properties of natural cleaved (10.4) calcite surfaces was obtained by a combined atomic force microscopy (AFM) and infrared (IR) study using CO as a probe molecule under ultrahigh vacuum (UHV) conditions. The structural quality of the surfaces was determined using non-contact AFM (NC-AFM), which also allowed assigning the adsorption site of CO molecules. Vibrational frequencies of adsorbed CO species were determined by polarization-resolved infrared reflection absorption spectroscopy (IRRAS). At low exposures, adsorption of CO on the freshly cleaved (10.4) calcite surface at a temperature of 62 K led to the occurrence of a single C-O vibrational band located at 2175.8 cm-1, blue-shifted with respect to the gas phase value. For larger exposures, a slight, coverage-induced redshift was observed, leading to a frequency of 2173.4 cm-1 for a full monolayer. The width of the vibrational bands is extremely small, providing strong evidence that the cleaved calcite surface is well-defined with only one CO adsorption site. A quantitative analysis of the IRRA spectra recorded at different surface temperatures revealed a CO binding energy of -0.31 eV. NC-AFM data acquired at 5 K for sub-monolayer CO coverage reveal single molecules imaged as depressions at the position of the protruding surface features, in agreement with the IRRAS results. Since there are no previous experimental data of this type, the interpretation of the results was aided by employing density functional theory calculations to determine adsorption geometries, binding energies, and vibrational frequencies of carbon monoxide on the (10.4) calcite surface. It was found that the preferred geometry of CO on this surface is adsorption on top of calcium in a slightly tilted orientation. With increased coverage, the binding energy shows a small decrease, revealing the presence of repulsive adsorbate-adsorbate interactions.

5.
ACS Appl Mater Interfaces ; 12(47): 53193-53205, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186021

RESUMO

A method for the fabrication of flexible electrical circuits on polyaramid substrates is presented based on laser-induced carbonization followed by copper electroplating. Locally carbonized flexible sheets of polyaramid (Nomex), by laser radiation, create rough and highly porous microstructures that show a higher degree of graphitization than thermally carbonized Nomex sheets. The found recipe for laser-induced carbonization creates conductivities of up to ∼45 S cm-1, thereby exceeding that observed for thermally pyrolyzed materials (∼38 S cm-1) and laser carbon derived from Kapton using the same laser wavelength (∼35 S cm-1). The electrical conductivity of the carbonized tracks was further improved by electroplating with copper. To demonstrate the electrical performance, fabricated circuits were tested and improvement of the sheet resistance was determined. Copper films exhibit antimicrobial activity and were used to fabricate customized flexible antibacterial coatings. The integration of laser carbonization and electroplating technologies in a polyaramid substrate points to the development of customized circuit designs for smart textiles operating in high-temperature environments.


Assuntos
Antibacterianos/química , Cobre/química , Lasers , Nylons/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Carbono/química , Cobre/farmacologia , Galvanoplastia , Escherichia coli/efeitos dos fármacos
6.
Chemphyschem ; 21(23): 2553-2564, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33118300

RESUMO

The growth of ZnO clusters supported by ZnO-bilayers on Ag(111) and the interaction of these oxide nanostructures with water have been studied by a multi-technique approach combining temperature-dependent infrared reflection absorption spectroscopy (IRRAS), grazing-emission X-ray photoelectron spectroscopy, and density functional theory calculations. Our results reveal that the ZnO bilayers exhibiting graphite-like structure are chemically inactive for water dissociation, whereas small ZnO clusters formed on top of these well-defined, yet chemically passive supports show extremely high reactivity - water is dissociated without an apparent activation barrier. Systematic isotopic substitution experiments using H2 16 O/D2 16 O/D2 18 O allow identification of various types of acidic hydroxyl groups. We demonstrate that a reliable characterization of these OH-species is possible via co-adsorption of CO, which leads to a red shift of the OD frequency due to the weak interaction via hydrogen bonding. The theoretical results provide atomic-level insight into the surface structure and chemical activity of the supported ZnO clusters and allow identification of the presence of under-coordinated Zn and O atoms at the edges and corners of the ZnO clusters as the active sites for H2 O dissociation.

7.
Nat Commun ; 11(1): 5391, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106489

RESUMO

Acceleration and unification of drug discovery is important to reduce the effort and cost of new drug development. Diverse chemical and biological conditions, specialized infrastructure and incompatibility between existing analytical methods with high-throughput, nanoliter scale chemistry make the whole drug discovery process lengthy and expensive. Here, we demonstrate a chemBIOS platform combining on-chip chemical synthesis, characterization and biological screening. We developed a dendrimer-based surface patterning that enables the generation of high-density nanodroplet arrays for both organic and aqueous liquids. Each droplet (among > 50,000 droplets per plate) functions as an individual, spatially separated nanovessel, that can be used for solution-based synthesis or analytical assays. An additional indium-tin oxide coating enables ultra-fast on-chip detection down to the attomole per droplet by matrix-assisted laser desorption/ionization mass spectrometry. The excellent optical properties of the chemBIOS platform allow for on-chip characterization and in-situ reaction monitoring in the ultraviolet, visible (on-chip UV-Vis spectroscopy and optical microscopy) and infrared (on-chip IR spectroscopy) regions. The platform is compatible with various cell-biological screenings, which opens new avenues in the fields of high-throughput synthesis and drug discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/química , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Estanho/química
8.
J Phys Chem Lett ; 11(18): 7925-7931, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32870002

RESUMO

Polar surfaces of solid oxides are intrinsically unstable and tend to reconstruct due to the diverging electrostatic energy and thus often exhibit unique physical and chemical properties. However, a quantitative description of the restructuring mechanism of these polar surfaces remains challenging. Here we provide an atomic-level picture of the refaceting process that governs the surface polarity compensation of cubic ceria nanoparticles based on the accurate reference data acquired from the well-defined model systems. The combined results from advanced infrared spectroscopy, atomic-resolved transmission electron microscopy, and density functional theory calculations identify a two-step scenario where an initial O-terminated (2 × 2) reconstruction is followed by a severe refaceting via massive mass transport at elevated temperatures to yield {111}-dominated nanopyramids. This significant surface restructuring promotes the redox properties of ceria nanocubes, which account for the enhanced catalytic activity for CO oxidation.

9.
Langmuir ; 36(35): 10490-10493, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32806892

RESUMO

The ultrathin precursor film surrounding droplets of liquid on a solid surface is used here as a confined reaction medium in order to drive a reaction that would not occur in bulk fluid. Sodium carbonate and calcium chloride mixed together in the presence of the organic thiol dithiothreitol (DTT) produced crystals of gypsum, or calcium sulfate, instead of the otherwise expected calcium carbonate. The possible sources of sulfate in the system are contaminants in the DTT or the oxidation product of the DTT sulfhydryl. The amount of gypsum produced implies that contaminants do not account for the total sulfate present in the system, suggesting that the DTT could be oxidized. The reaction quotient may be skewed in favor of this unexpected reaction by a combination of efficient removal of sulfate by precipitation and the concentration of DTT at the leading edge of the precursor film through the coffee-ring effect during a brief drying step.

10.
Angew Chem Int Ed Engl ; 59(42): 18639-18645, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-32627908

RESUMO

Sulfur as a side product of natural gas and oil refining is an underused resource. Converting landfilled sulfur waste into materials merges the ecological imperative of resource efficiency with economic considerations. A strategy to convert sulfur into polymeric materials is the inverse vulcanization reaction of sulfur with alkenes. However, the materials formed are of limited applicability, because they need to be cured at high temperatures (>130 °C) for many hours. Herein, we report the reaction of elemental sulfur with styrylethyltrimethoxysilane. Marrying the inverse vulcanization and silane chemistry yielded high sulfur content polysilanes, which could be cured via room temperature polycondensation to obtain coated surfaces, particles, and crosslinked materials. The polycondensation was triggered by hydrolysis of poly(sulfur-r-styrylethyltrimethoxysilane) (poly(Sn -r-StyTMS) under mild conditions (HCl, pH 4). For the first time, an inverse vulcanization polymer could be conveniently coated and mildly cured via post-polycondensation. Silica microparticles coated with the high sulfur content polymer could improve their Hg2+ ion remediation capability.

11.
ACS Appl Mater Interfaces ; 12(27): 30972-30979, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573186

RESUMO

1-Hexyne monomers were potentiostatically electropolymerized upon confinement in 1D channels of a surface-mounted metal-organic framework Cu(BDC) (SURMOF-2). A layer-by-layer deposition method allowed for SURMOF depostition on substrates with prepatterned electrodes, making it possible to characterize electrical conductivity in situ, i.e., without having to delaminate the conductive polymer thin film. Successful polymerization was evidenced by mass spectroscopy, and the electrical measurements demonstrated an increase of the electrical conductivity of the MOF material by 8 orders of magnitude. Extensive DFT calculations revealed that the final conductivity is limited by electron hopping between the conductive oligomers.

12.
Mater Today Bio ; 6: 100053, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32462138

RESUMO

The traditional pipeline of hydrogel development includes individual one-by-one synthesis and characterization of hydrogels. This approach is associated with the disadvantages of low-throughput and high cost. As an alternative approach to classical one-by-one synthesis, high-throughput development of hydrogels is still tremendously under-represented in the field of responsive material development, despite the urgent requirement for such techniques. Here, we report a platform that combines highly miniaturized hydrogel synthesis with screening for responsive properties in a high-throughput manner. The platform comprises a standard glass slide patterned with 1 â€‹× â€‹1 â€‹mm hydrophilic regions separated by superhydrophobic liquid-impermeable barriers, thus allowing deposition of various precursor solutions onto the hydrophilic spots without cross-contamination. The confinement of these solutions provided by the hydrophilic/superhydrophobic pattern allows encapsulation of cells within the hydrogel, and enables variation in hydrogel height and width. We have also proved the proper mixing of chemicals within the nanoliter-sized droplets. We have successfully implemented this platform for the synthesis of hydrogels, constructing 53 unique hydrogels, to demonstrate the versatility and utility of the platform. Photodegradation studies were performed on 20 hydrogels, revealing structure/function relationships between the hydrogel composition and photodegradability, and covering the range of degradability from non-degradable to rapidly degradable materials.

13.
Angew Chem Int Ed Engl ; 59(26): 10514-10518, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32196128

RESUMO

In contrast to catalytically active metal single atoms deposited on oxide nanoparticles, the crystalline nature of metal-organic frameworks (MOFs) allows for a thorough characterization of reaction mechanisms. Using defect-free HKUST-1 MOF thin films, we demonstrate that Cu+ /Cu2+ dimer defects, created in a controlled fashion by reducing the pristine Cu2+ /Cu2+ pairs of the intact framework, account for the high catalytic activity in low-temperature CO oxidation. Combining advanced IR spectroscopy and density functional theory we propose a new reaction mechanism where the key intermediate is an uncharged O2 species, weakly bound to Cu+ /Cu2+ . Our results reveal a complex interplay between electronic and steric effects at defect sites in MOFs and provide important guidelines for tailoring and exploiting the catalytic activity of single metal atom sites.

14.
Inorg Chem ; 59(6): 3677-3685, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32090551

RESUMO

Fe3O4/CoFe2O4 nanorods were obtained via a simple seed-mediated synthesis. Nanorods were used as seeds to grow CoFe2O4 by thermal codecomposition of the cobalt(II) and iron(III) acetylacetonate precursors. The growth process was monitored by electron microscopy (SEM, TEM), and the resulting nanorods were characterized by powder X-ray diffraction analysis and IR and Raman spectroscopy. Magnetometry and AC susceptometry studies revealed a distribution of Néel relaxation times with an average blocking temperature of 140 K and a high-field magnetization of 42 Am2/kg. Complementarily recorded 57Fe-Mössbauer spectra were consistent with the Fe3O4/CoFe2O4 spinel structure and exhibited considerable signs of spin frustration, which was correlated to the internal and surface structure of the nanorods.

15.
Small ; 16(10): e1905971, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31985878

RESUMO

Miniaturization and parallelization of combinatorial organic synthesis is important to accelerate the process of drug discovery while reducing the consumption of reagents and solvents. This work presents a miniaturized platform for on-chip solid-phase combinatorial library synthesis with UV-triggered on-chip cell screening. The platform is based on a nanoporous polymer coating on a glass slide, which is modified via photolithography to yield arrays of hydrophilic (HL) spots surrounded by superhydrophobic (SH) surface. The combination of HL spots and SH background enables confinement of nanoliter droplets, functioning as miniaturized reactors for the solid-phase synthesis. The polymer serves as support for nanomolar solid-phase synthesis, while a photocleavable linker enables the release of the synthesized compounds into the droplets containing live cells. A 588 compound library of bisamides is synthesized via a four-component Ugi reaction on the chip and products are detected via stamping of the droplet array onto a conductive substrate and subsequent matrix-assisted laser desorption ionization mass spectrometry. The light-induced cleavage shows high flexibility in screening conditions by spatial, temporal, and quantitative control.


Assuntos
Técnicas de Química Analítica , Técnicas de Síntese em Fase Sólida , Técnicas de Química Analítica/métodos , Interações Hidrofóbicas e Hidrofílicas , Miniaturização , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Síntese em Fase Sólida/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Raios Ultravioleta
16.
RSC Adv ; 10(28): 16616-16628, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35498854

RESUMO

Edible rice paper wrapper is found to be an interesting precursor of a porous and light-weight carbon material. During pyrolysis, material samples show significant differences in length change, displaying typical 20-25% shrinking in the in-plane directions, and strongly expanding (up to 500%) across their out-of-plane direction. This results in a template-free synthesis of a 3D network of cellular carbon material. The out-of-plane expansion also allows for fabrication of 3D shapes of cellular carbon material from the 2D precursor. The rice paper derived carbon material features a hierarchical porosity, resulting in a specific surface area ranging from 6 m2 g-1 to 239 m2 g-1 depending on the synthesis temperature. The carbon material has a density of 0.02-0.03 g cm-3, and a higher modulus-density ratio than reported for other cellular carbon materials. It is mechanically stiff and exhibits excellent fire-resistant properties.

17.
Nat Commun ; 10(1): 5522, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797918

RESUMO

Biomedical applications require substrata that allow for the grafting, colonization and control of eukaryotic cells. Currently available materials are often limited by insufficient possibilities for the integration of biological functions and means for tuning the mechanical properties. We report on tailorable nanocomposite materials in which silica nanoparticles are interwoven with carbon nanotubes by DNA polymerization. The modular, well controllable and scalable synthesis yields materials whose composition can be gradually adjusted to produce synergistic, non-linear mechanical stiffness and viscosity properties. The materials were exploited as substrata that outperform conventional culture surfaces in the ability to control cellular adhesion, proliferation and transmigration through the hydrogel matrix. The composite materials also enable the construction of layered cell architectures, the expansion of embryonic stem cells by simplified cultivation methods and the on-demand release of uniformly sized stem cell spheroids.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanocompostos/química , Nanotubos de Carbono/química , Dióxido de Silício/química , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Hidrogéis/química , Células MCF-7 , Teste de Materiais/métodos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanocompostos/ultraestrutura , Resistência à Tração , Viscosidade
18.
Sci Rep ; 9(1): 15885, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685941

RESUMO

In this work, the concentration polarization layer (CPL) of sulphate in a cross-flow membrane system was measured in-situ using Raman microspectroscopy (RM). The focus of this work is to introduce RM as a new tool for the study of mass transfer inside membrane channels in reverse osmosis (RO) and nanofiltration (NF) generally. Specifically, this work demonstrates how to use RM for locally resolved measurement of sulphate concentration in a cross-flow flat-sheet NF membrane flow cell with channel dimensions similar to commonly applied RO/NF spiral wound modules (channel height about 0.7 mm). Concentration polarization profiles of an aqueous magnesium sulphate solution of 10 gsulphate·L-1 were obtained at operating pressure of 10 bar and cross-flow velocities of 0.04 and 0.2 m·s-1. The ability of RM to provide accurate concentration profiles is discussed thoroughly. Optical effects due to refraction present one of the main challenges of the method by substantially affecting signal intensity and depth resolution. The concentration profiles obtained in this concept study are consistent with theory and show reduced CPL thickness and membrane wall concentration with increasing cross-flow velocity. The severity of CP was quantified to reach almost double the bulk concentration at the lower velocity.

19.
Front Chem ; 7: 451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31294016

RESUMO

The precise determination of the surface structure of iron oxides (hematite and magnetite) is a vital prerequisite to understand their unique chemical and physical properties under different conditions. Here, the atomic structure evolution of the hematite (0001) surface under reducing conditions was tracked by polarization-resolved infrared reflection absorption spectroscopy (IRRAS) using carbon monoxide (CO) as a probe molecule. The frequency and intensity of the CO stretch vibration is extremely sensitive to the valence state and electronic environments of surface iron cations. Our comprehensive IRRAS results provide direct evidence that the monocrystalline, stoichiometric α-Fe2O3(0001) surface is single Fe-terminated. The initial reduction induced by annealing at elevated temperatures produces surface oxygen vacancies, where the excess electrons are localized at adjacent subsurface iron ions (5-fold coordinated). A massive surface restructuring occurs upon further reduction by exposing to atomic hydrogen followed by Ar+-sputtering and annealing under oxygen poor conditions. The restructured surface is identified as a Fe3O4(111)/Fe1-xO(111)-biphase exposing both, Fe3+ and Fe2+ surface species. Here the well-defined surface domains of Fe3O4(111) exhibit a Feoct2-termination, while the reduced Fe1-xO(111) is Fe2+(oct)-terminated. These findings are supported by reference IRRAS data acquired for CO adsorption on magnetite (111) and (001) monocrystalline surfaces.

20.
Small ; 15(20): e1900083, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30985076

RESUMO

The development of methods for colloidal self-assembly on solid surfaces is important for many applications in biomedical sciences. Toward this goal, described is a versatile class of mesoporous silica nanoparticles (MSN) that contain on their surface various types of DNA molecules to enable their self-assembly into micropatterned surface architectures useful for cell studies. Monodisperse dye-doped MSN are synthesized by biphase stratification and functionalized with an aptamer oligonucleotide that serves as gatekeeper for the triggered release of encapsulated molecular cargo, such as fluorescent dye rhodamine B or the anticancer drug doxorubicin. One or two additional types of oligonucleotides are installed on the MSN surface to enable DNA-directed immobilization on solid substrates bearing patterns of complementary capture oligonucleotides. It is demonstrated that this strategy can be used for efficient self-assembly of microstructured surface architectures, which not only promote the adhesion and guidance of cells but also are capable of affecting the fate of adhered cells through triggered release of their cargo. It is believed that this approach is useful for diverse applications in tissue engineering and nanobio sciences.


Assuntos
DNA/química , Nanopartículas/química , Dióxido de Silício/química , Coloides/química , Fluorescência , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...