Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Am J Med Genet A ; 191(6): 1518-1524, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36924216

RESUMO

Arteriovenous malformations (AVMs) are vascular lesions in which an overgrowth of blood vessels of varying sizes develops with one or more direct connections between the arterial and venous circulation. We performed a retrospective review of a cohort of 54 patients with AVMs referred to our clinical genomic laboratory for high-depth next-generation sequencing (NGS) panel of Disorders of Somatic Mosaicism (DoSM). Thirty-seven of 54 patients were female (68.5%). Among the 54 cases, 37 (68.5%) cases had pathogenic and/or likely pathogenic (P/LP) variants identified, two cases (3.7%) had variants of uncertain clinical significance, and the remaining 15 cases (27.8%) had negative results. MAP2K1 variants were found in 12 cases, followed by eight cases with KRAS variants and seven with TEK variants, and the remainder being identified in several other genes on the panel. Among the 37 positive cases, 32 cases had somatic alterations only; the remaining five cases had at least one germline P/LP variant, including four cases with PTEN and one with RASA1. Of note, two cases had the unexpected co-existence of two P/LP variants. In summary, this study illustrated the molecular diagnostic yield (68.5%) of this cohort of patients with a clinical indication of AVMs by our high-depth DoSM NGS panel.


Assuntos
Malformações Arteriovenosas , Humanos , Feminino , Masculino , Mutação , Malformações Arteriovenosas/diagnóstico , Malformações Arteriovenosas/genética , Mutação em Linhagem Germinativa , Aberrações Cromossômicas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteína p120 Ativadora de GTPase/genética
2.
Genet Med ; 25(3): 100348, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571464

RESUMO

PURPOSE: RAS genes (HRAS, KRAS, and NRAS) are commonly found to be mutated in cancers, and activating RAS variants are also found in disorders of somatic mosaicism (DoSM). A survey of the mutational spectrum of RAS variants in DoSM has not been performed. METHODS: A total of 938 individuals with suspected DoSM underwent high-sensitivity clinical next-generation sequencing-based testing. We investigated the mutational spectrum and genotype-phenotype associations of mosaic RAS variants. RESULTS: In this article, we present a series of individuals with DoSM with RAS variants. Classic hotspots, including Gly12, Gly13, and Gln61 constituted the majority of RAS variants observed in DoSM. Furthermore, we present 12 individuals with HRAS and KRAS in-frame duplication/insertion (dup/ins) variants in the switch II domain. Among the 18.3% individuals with RAS in-frame dup/ins variants, clinical findings were mainly associated with vascular malformations. Hotspots were associated with a broad phenotypic spectrum, including vascular tumors, vascular malformations, nevoid proliferations, segmental overgrowth, digital anomalies, and combinations of these. The median age at testing was higher and the variant allelic fraction was lower in individuals with in-frame dup/ins variants than those in individuals with mosaic RAS hotspots. CONCLUSION: Our work provides insight into the allelic and clinical heterogeneity of mosaic RAS variants in nonmalignant conditions.


Assuntos
Mosaicismo , Malformações Vasculares , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Alelos , Malformações Vasculares/genética
3.
Neurooncol Adv ; 4(1): vdac002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35156038

RESUMO

BACKGROUND: Many factors impact survival in patients with glioblastoma, including age, Karnofsky Performance Status, postoperative chemoradiation, IDH1/2 mutation status, MGMT promoter methylation status, and extent of resection. High-throughput next-generation sequencing is a widely available diagnostic tool, but the independent impact of tumors harboring specific mutant genes on survival and the efficacy of extent of resection are not clear. METHODS: We utilized a widely available diagnostic platform (FoundationOne CDx) to perform high-throughput next-generation sequencing on 185 patients with newly diagnosed glioblastoma in our tertiary care center. We performed multivariate analysis to control for clinical parameters with known impact on survival to elucidate the independent prognostic value of prevalent mutant genes and the independent impact of gross total resection. RESULTS: When controlling for factors with known prognostic significance including IDH1/2 mutation and after multiple comparisons analysis, CDKN2B and EGFR mutations were associated with reduced overall survival while PTEN mutation was associated with improved overall survival. Gross total resection, compared to other extent of resection, was associated with improved overall survival in patients with tumors harboring mutations in CDKN2A, CDKN2B, EGFR, PTEN, TERT promoter, and TP53. All patients possessed at least one of these 6 mutant genes. CONCLUSIONS: This study verifies the independent prognostic value of several mutant genes in glioblastoma. Six commonly found mutant genes were associated with improved survival when gross total resection was achieved. Thus, even when accounting for known predictors of survival and multiple mutant gene comparisons, extent of resection continues to be strongly associated with survival.

4.
Genet Med ; 23(10): 1882-1888, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34040190

RESUMO

PURPOSE: Somatic activating variants in the PI3K-AKT pathway cause vascular malformations with and without overgrowth. We previously reported an individual with capillary and lymphatic malformation harboring a pathogenic somatic variant in PIK3R1, which encodes three PI3K complex regulatory subunits. Here, we investigate PIK3R1 in a large cohort with vascular anomalies and identify an additional 16 individuals with somatic mosaic variants in PIK3R1. METHODS: Affected tissue from individuals with vascular lesions and overgrowth recruited from a multisite collaborative network was studied. Next-generation sequencing targeting coding regions of cell-signaling and cancer-associated genes was performed followed by assessment of variant pathogenicity. RESULTS: The phenotypic and variant spectrum associated with somatic variation in PIK3R1 is reported herein. Variants occurred in the inter-SH2 or N-terminal SH2 domains of all three PIK3R1 protein products. Phenotypic features overlapped those of the PIK3CA-related overgrowth spectrum (PROS). These overlapping features included mixed vascular malformations, sandal toe gap deformity with macrodactyly, lymphatic malformations, venous ectasias, and overgrowth of soft tissue or bone. CONCLUSION: Somatic PIK3R1 variants sharing attributes with cancer-associated variants cause complex vascular malformations and overgrowth. The PIK3R1-associated phenotypic spectrum overlaps with PROS. These data extend understanding of the diverse phenotypic spectrum attributable to genetic variation in the PI3K-AKT pathway.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Deformidades Congênitas dos Membros , Malformações Vasculares , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais , Malformações Vasculares/genética
5.
J Mol Diagn ; 23(2): 200-211, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33217554

RESUMO

Severe congenital neutropenia (SCN) is a collection of diverse disorders characterized by chronically low absolute neutrophil count in the peripheral blood, increased susceptibility to infection, and a significant predisposition to the development of myeloid malignancies. SCN can be acquired or inherited. Inherited forms have been linked to variants in a group of diverse genes involved in the neutrophil-differentiation process. Variants that promote resistance to treatment have also been identified. Thus, genetic testing is important for the diagnosis, prognosis, and management of SCN. Herein we describe clinically validated assay developed for assessing patients with suspected SCN. The assay is performed from a whole-exome backbone. Variants are called across all coding exons, and results are filtered to focus on 48 genes that are clinically relevant to SCN. Validation results indicated 100% analytical sensitivity and specificity for the detection of constitutional variants among the 48 reportable genes. To date, 34 individuals have been referred for testing (age range: birth to 67 years). Several pathogenic and likely pathogenic variants have been identified, including one in a patient with late-onset disease. The pattern of cases referred for testing suggests that this assay has clinical utility in a broader spectrum of patients beyond those in the pediatric population who have classic early-onset symptoms characteristic of SCN.


Assuntos
Síndrome Congênita de Insuficiência da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Neutropenia/congênito , Cromossomos Humanos Par 7/genética , Estudos de Coortes , Dosagem de Genes , Genoma Humano , Humanos , Mutação/genética , Neutropenia/genética , Neutropenia/patologia , Reprodutibilidade dos Testes
6.
Pract Lab Med ; 21: e00170, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32548229

RESUMO

OBJECTIVES: In 2017, AMP, ASCO and CAP jointly published the first formalized classification system for the interpretation and reporting of sequence variants in cancer. The challenges of incorporating new variant interpretation guidelines into existing, validated workflows have likely hampered adoption and implementation in labs with classification methods in place. Ambiguity in assigning clinical significance across guidelines is grounded in differential weighting of evidence used in variant assessment. Therefore, we undertook an internal process-improvement exercise to correlate the two classification schemes using historical laboratory data. DESIGN AND METHODS: Existing clinical variant assignments from 40 consecutive oncology cases comprising 150 somatic variants were re-assessed according to the 2017 AMP/ASCO/CAP scheme. Approximately 50% of these were cancers of the gynecologic tract. RESULTS: Our laboratory-developed (GPS) classifications for 'actionable' variants and variants of uncertain clinical significance mapped consistently with the AMP/ASCO/CAP Tiers I-III. The majority of Level 1 variants were reclassified to Tier I (21/25; 84%) while all Level 2 and Level 4 variants were assigned to Tier II (9/9; 100%) and Tier III (17/17; 100%), respectively. The greatest variability was seen for GPS Level 3 variants, which was strongly influenced by TP53 interpretations. Ultimately, we found that most GPS Level 3 variants were classified as Tier III (77/99; 77.8%). CONCLUSIONS: Our internally developed 5-level classifications mapped consistently with the proposed AMP/ASCO/CAP 4-Tiered system. As a result of this analysis, we can provide a framework for other labs considering a similar transition to the 2017 AMP/ASCO/CAP guidelines and a rationale for explaining specific discrepancies.

7.
Kidney360 ; 1(8): 772-780, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-35372954

RESUMO

Background: Next-generation sequencing (NGS) is a useful tool for evaluating patients with suspected genetic kidney disease. Clinical practice relies on the use of targeted gene panels that are ordered based on patient presentation. We compare the diagnostic yield of clinical panel-based testing to exome analysis. Methods: In total, 324 consecutive patients underwent physician-ordered, panel-based NGS testing between December 2014 and October 2018. Gene panels were available for four clinical phenotypes, including atypical hemolytic uremic syndrome (n=224), nephrotic syndrome (n=56), cystic kidney disease (n=26), and Alport syndrome (n=13). Variants were analyzed and clinical reports were signed out by a pathologist or clinical geneticist at the time of testing. Subsequently, all patients underwent retrospective exome analysis to detect additional clinically significant variants in kidney disease genes that were not analyzed as part of the initial clinical gene panel. Resulting variants were classified according to the American College of Medical Genetics and Genomics 2015 guidelines. Results: In the initial physician-ordered gene panels, we identified clinically significant pathogenic or likely pathogenic variants in 13% of patients (n=42/324). CFHR3-CFHR1 homozygous deletion was detected in an additional 13 patients with aHUS without a pathogenic or likely pathogenic variant. Diagnostic yield of the initial physician-ordered gene panel was 20% and varied between groups. Retrospective exome analysis identified 18 patients with a previously unknown pathogenic or likely pathogenic variant in a kidney disease gene and eight patients with a high-risk APOL1 genotype. Overall, retrospective exome analysis increased the diagnostic yield of panel-based testing from 20% to 30%. Conclusions: These results highlight the importance of a broad and collaborative approach between the clinical laboratory and their physician clients that employs additional analysis when a targeted panel of kidney disease-causing genes does not return a clinically meaningful result.


Assuntos
Exoma , Nefropatias , Apolipoproteína L1 , Exoma/genética , Homozigoto , Humanos , Estudos Retrospectivos , Deleção de Sequência
8.
Am J Hum Genet ; 105(4): 734-746, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585106

RESUMO

Disorders of somatic mosaicism (DoSM) are a diverse group of syndromic and non-syndromic conditions caused by mosaic variants in genes that regulate cell survival and proliferation. Despite overlap in gene space and technical requirements, few clinical labs specialize in DoSM compared to oncology. We adapted a high-sensitivity next-generation sequencing cancer assay for DoSM in 2014. Some 343 individuals have been tested over the past 5 years, 58% of which had pathogenic and likely pathogenic (P/LP) findings, for a total of 206 P/LP variants in 22 genes. Parameters associated with the high diagnostic yield were: (1) deep sequencing (∼2,000× coverage), (2) a broad gene set, and (3) testing affected tissues. Fresh and formalin-fixed paraffin embedded tissues performed equivalently for identification of P/LP variants (62% and 71% of individuals, respectively). Comparing cultured fibroblasts to skin biopsies suggested that culturing might boost the allelic fraction of variants that confer a growth advantage, specifically gain-of-function variants in PIK3CA. Buccal swabs showed high diagnostic sensitivity in case subjects where disease phenotypes manifested in the head or brain. Peripheral blood was useful as an unaffected comparator tissue to determine somatic versus constitutional origin but had poor diagnostic sensitivity. Descriptions of all tested individuals, specimens, and P/LP variants included in this cohort are available to further the study of the DoSM population.


Assuntos
Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mosaicismo , Biópsia , Estudos de Coortes , Humanos
10.
J Mol Diagn ; 21(5): 903-912, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31251990

RESUMO

Clinical next-generation sequencing assays are often run on tumor specimens without a matched normal specimen, which complicates the differentiation of germline from somatic variants. In tumor-only testing, population data are often used to infer germline status, though no consensus exists on the exact population frequency (PF) cutoff above which a variant should be considered likely germline. In this study, five population databases plus the Catalog of Somatic Mutations in Cancer were used to demonstrate the impact of changing the PF cutoff on assignment of variants as germline versus somatic. The 1% to 2% PF cutoffs widely used in bioinformatic pipelines resulted in high sensitivity for classification of somatic variants, but unnecessarily reduced sensitivity for germline variants. Using optimized PF cutoffs, the source of variants in The Cancer Genome Atlas (TCGA) data could be predicted with >95% accuracy. Further exploration of four TCGA cancer data sets indicated that the optimal cutoff is influenced by both cancer type and the assay region of interest. Comparing TCGA data to data generated from a clinical, hybridization capture test (approximately 615 kb capture space) showed that PF cutoffs may not be transferable between assays, even when the gene set is held constant. Thus, filtering approaches need to be carefully designed and optimized, and should be assay-specific to support tumor-only testing until tumor-normal testing becomes routine in the clinical setting.


Assuntos
Biologia Computacional/normas , Predisposição Genética para Doença , Genética Populacional/normas , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/normas , Neoplasias/diagnóstico , Polimorfismo Genético , Biologia Computacional/métodos , Frequência do Gene , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/epidemiologia , Neoplasias/genética , Estados Unidos/epidemiologia
11.
Hum Pathol ; 86: 170-181, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30594748

RESUMO

Glioblastoma is the most common primary malignancy of the adult central nervous system. Gliomagenesis involves a complex range of alterations, including sequence changes, copy number variations (CNVs), and epigenetic modifications, that have clinical implications for disease classification and prognosis. Thus, multiple testing modalities are required to support a complete diagnostic workup. The goal of this study was to streamline the multipart workflow by predicting both sequence changes and CNVs (specifically EGFR amplifications) from a single next-generation sequencing (NGS) test. Eighty-six primary and secondary glioblastomas were submitted for clinical NGS to report sequence variants from a concise panel of cancer-relevant genes. Most specimens underwent concomitant testing by methylation-specific polymerase chain reaction, immunohistochemistry, and fluorescence in situ hybridization. Using data generated during the course of clinical testing, we found that NGS-based variant predictions were concordant with immunohistochemistry and fluorescence in situ hybridization for IDH mutation and EGFR amplification status, respectively. We also noted that EGFR amplifications correlated with polysomy of chromosome 7, 19, and 20, and loss of PTEN and CDKN2A. EGFR-unamplified cases had lower rates of chromosome 7 polysomy, and PTEN and CDKN2A loss, but more CNVs overall. TP53, NF1, ATRX, and PDGFRA mutations were nearly exclusive to specimens without EGFR amplification. EGFR amplification was not associated with longer progression-free survival in this cohort, but amplifications were enriched in a group with slightly longer overall survival despite radiographic evidence of disease progression. Further study is needed to explore the mechanisms responsible for noted patterns of co-occurring variants and to correlate them with specific clinical outcomes.


Assuntos
Neoplasias Encefálicas/genética , Variações do Número de Cópias de DNA , Glioblastoma/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Receptores ErbB/genética , Feminino , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico
13.
Front Immunol ; 9: 781, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719539

RESUMO

Natural killer (NK) cells are vital components of the antiviral immune response, but their contributions in defense against influenza A virus (IAV) are not well understood. To better understand NK cell responses during IAV infections, we examined the magnitude, kinetics, and contribution of NK cells to immunity and protection during high- and low-dose IAV infections. Herein, we demonstrate an increased accumulation of NK cells in the lung in high-dose vs. low-dose infections. In part, this increase is due to the local proliferation of pulmonary NK cells. However, the majority of NK cell accumulation within the lungs and airways during an IAV infection is due to recruitment that is partially dependent upon CXCR3 and CCR5, respectively. Therefore, altogether, our results demonstrate that NK cells are actively recruited to the lungs and airways during IAV infection and that the magnitude of the recruitment may relate to the inflammatory environment found within the tissues during high- and low-dose IAV infections.


Assuntos
Células Matadoras Naturais/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Receptores CCR5/imunologia , Receptores CXCR3/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Vírus da Influenza A , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
14.
Thorax ; 73(5): 489-492, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29382801

RESUMO

Familial pulmonary fibrosis is associated with loss-of-function mutations in telomerase reverse transcriptase (TERT) and short telomeres. Interstitial lung diseases have become the leading indication for lung transplantation in the USA, and recent data indicate that pathogenic mutations in telomerase may cause unfavourable outcomes following lung transplantation. Although a rare occurrence, solid organ transplant recipients who develop acute graft-versus-host disease (GVHD) have very poor survival. This case report describes the detection of a novel mutation in TERT in a patient who had lung transplantation for familial pulmonary fibrosis and died from complications of acute GVHD.


Assuntos
Doença Enxerto-Hospedeiro/etiologia , Transplante de Pulmão/efeitos adversos , Fibrose Pulmonar/genética , Telomerase/genética , Doença Aguda , Evolução Fatal , Feminino , Doença Enxerto-Hospedeiro/patologia , Humanos , Mutação , Fibrose Pulmonar/cirurgia , Telomerase/metabolismo
15.
Int J Gynecol Pathol ; 37(6): 581-589, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29084048

RESUMO

A subset of endometrial adenocarcinomas (EACs) exhibit microsatellite instability and have deficient DNA mismatch repair (dMMR). The overall aim of the study was to compare the spectrum of mutations in endometrioid-type EAC with and without dMMR by using a clinically validated next-generation sequencing assay. We retrospectively identified 19 EACs with known mismatch repair status that had undergone targeted sequencing of a panel of cancer-related genes. The mismatch repair status was ascertained by immunohistochemistry against MLH1, PMS2, MSH2, and MSH6 mismatch proteins. Somatic mutations in EAC with dMMR were compared against those in cases with proficient MMR (pMMR). The dMMR EAC showed a normalized mean of 66.6 mutations/Mb per case compared with pMMR EAC with a mean of 26.2 (P<0.05). The most commonly mutated genes were PTEN (89% of dMMR, 50% of pMMR), PIK3CA (67% vs. 40%), ATM (89% vs. 40%), and FLT3 (67% vs. 50%). The transition/transversion ratio was 4.7 versus 2.8 for the dMMR and pMMR cohorts, respectively (P<0.05). Copy number variant analysis did not demonstrate significant differences between the dMMR and pMMR cohorts and was not correlated with histologic grade of EAC. In conclusion, tumorigenesis of EAC in the context of dMMR demonstrated heavier mutational burdens and higher transition/transversion ratio. The spectrum of genetic alterations can potentially help identify cases with microsatellite instability phenotype using next-generation sequencing data from a targeted cancer gene panel.


Assuntos
Carcinoma Endometrioide/genética , Reparo de Erro de Pareamento de DNA/genética , Neoplasias do Endométrio/genética , Instabilidade de Microssatélites , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Endometrioide/patologia , Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 2 Homóloga a MutS/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-28835367

RESUMO

FGFR2 is recurrently amplified in 5% of gastric cancers and 1%-4% of breast cancers; however, this molecular alteration has never been reported in a primary colorectal cancer specimen. Preclinical studies indicate that several FGFR tyrosine-kinase inhibitors (TKIs), such as AZD4547, have in vitro activity against the FGFR2-amplified colorectal cell line, NCI-H716. The efficacy of these inhibitors is currently under investigation in clinical trials for breast and gastric cancer. Thus, better characterizing colorectal tumors for FGFR2 amplification could identify a subset of patients who may benefit from FGFR TKI therapies. Here, we describe a novel FGFR2 amplification identified by clinical next-generation sequencing in a primary colorectal cancer. Further characterization of the tumor by immunohistochemistry showed neuroendocrine differentiation, similar to the reported properties of the NCI-H716 cell line. These findings demonstrate that the spectrum of potentially clinically actionable mutations detected by targeted clinical sequencing panels is not limited to only single-nucleotide polymorphisms and insertions/deletions but also to copy-number alterations.


Assuntos
Polipose Adenomatosa do Colo/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Adenocarcinoma/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Variações do Número de Cópias de DNA/genética , Feminino , Amplificação de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Gástricas/genética
17.
Mod Pathol ; 30(12): 1739-1747, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28752844

RESUMO

Next-generation sequencing is increasingly used for clinical evaluation of patients presenting with thrombotic microangiopathies because it allows for simultaneous interrogation of multiple complement and coagulation pathway genes known to be associated with disease. However, the diagnostic yield is undefined in routine clinical practice. Historic studies relied on case-control cohorts, did not apply current guidelines for variant pathogenicity assessment, and used targeted gene enrichment combined with next-generation sequencing. A clinically enhanced exome, targeting ~54 Mb, was sequenced for 73 patients. Variant analysis and interpretation were performed on genes with biological relevance in thrombotic microangiopathy (C3,CD46, CFB, CFH, CFI, DGKE, and THBD). CFHR3-CFHR1 deletion status was also assessed using multiplex ligation-dependent probe amplification. Variants were classified using American College of Medical Genetics and Genomics guidelines. We identified 5 unique novel and 14 unique rare variants in 25% (18/73) of patients, including a total of 5 pathogenic, 4 likely pathogenic, and 15 variants of uncertain clinical significance. Nine patients had homozygous deletions in CFHR3-CFHR1. The diagnostic yield, defined as the presence of a pathogenic variant, likely pathogenic variant or homozygous deletion of CFHR3-CFHR1, was 25% for all patients tested. Variants of uncertain clinical significance were identified in 21% (15/73) of patients.These results illustrate the expected diagnositic yield in the setting of thrombotic microangiopathies through the application of standardized variant interpretation, and highlight the utility of such an approach. Sequencing a clinically enhanced exome to enable targeted, disease-specific variant analysis is a viable approach. The moderate rate of variants of uncertain clinical significance highlights the paucity of data surrounding the variants in our cohort and illustrates the need for expanded variant curation resources to aid in thrombotic microangiopathy-related disease variant classification.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microangiopatias Trombóticas/diagnóstico , Microangiopatias Trombóticas/genética , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Exoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
J Mol Diagn ; 19(2): 328-337, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28042970

RESUMO

The 2007 World Health Organization Classification of Tumours of the Central Nervous System classifies lower-grade gliomas [LGGs (grades II to III diffuse gliomas)] morphologically as astrocytomas or oligodendrogliomas, and tumors with unclear ambiguous morphology as oligoastrocytomas. The World Health Organization's newly released (2016) classification incorporates molecular data. A single, targeted next-generation sequencing (NGS) panel was used for detecting single-nucleotide variation and copy number variation in 50 LGG cases originally classified using the 2007 criteria, including 36 oligoastrocytomas, 11 oligodendrogliomas, 2 astrocytomas, and 1 LGG not otherwise specified. NGS results were compared with those from IHC analysis and fluorescence in situ hybridization to assess concordance and to categorize the tumors according to the 2016 criteria. NGS results were concordant with those from IHC analysis in all cases. In 3 cases, NGS was superior to fluorescence in situ hybridization in distinguishing segmental chromosomal losses from whole-arm deletions. The NGS approach was effective in reclassifying 36 oligoastrocytomas as 30 astrocytomas (20 IDH1/2 mutant and 10 IDH1/2 wild type) and 6 oligodendrogliomas, and 1 oligodendroglioma as an astrocytoma (IDH1/2 mutant). Here we show that a single, targeted NGS assay can serve as the sole testing modality for categorizing LGG according to the World Health Organization's 2016 diagnostic scheme. This modality affords greater accuracy and efficiency while reducing specimen tissue requirements compared with multimodal approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Glioma/diagnóstico , Glioma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Gerenciamento Clínico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fluxo de Trabalho , Adulto Jovem
20.
Sci Rep ; 6: 28837, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27354027

RESUMO

Invariant NKT (iNKT) cells are critical to the maintenance of tolerance toward alloantigens encountered during postnatal life pointing to the existence of a process for self-education. However, the impact of developmentally encountered alloantigens in shaping the phenotype and function of iNKT cells has not been described. To better understand this process, the current report examined naïve iNKT cells as they matured in an allogeneic environment. Following the prenatal transfer of fetal hematopoietic cells between age-matched allogeneic murine fetuses, cell-extrinsic signals appeared to dictate allospecific patterns of Ly49 receptor expression and lineage diversity in developing iNKT cells. Regulation for this process arose from cells of hematopoietic origin requiring only rare exposure to facilitate broad changes in developing iNKT cells. These findings highlight surprisingly asymmetric allospecific alterations in iNKT cells as they develop and mature in an allogeneic environment and establish a new paradigm for study of the self-education of iNKT cells.


Assuntos
Células T Matadoras Naturais/fisiologia , Animais , Linhagem da Célula , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células T Matadoras Naturais/transplante , Tolerância ao Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...