Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-090332

RESUMO

BackgroundMorbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. MethodsWe performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. ResultsACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA and PPIB), CD26 (DPP4) and related molecules were expressed in both, epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of ACE2- and CD147-related genes in the lesional skin of patients with atopic dermatitis. ConclusionsOur data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related with age, gender, obesity and smoking, as well as with the disease status might contribute to COVID-19 morbidity and severity patterns.

2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-811071

RESUMO

Since the airways are constantly exposed to various pathogens and foreign antigens, various kinds of cells in the airways—including structural cells and immune cells—interact to form a precise defense system against pathogens and antigens that involve both innate immunity and acquired immunity. Accumulating evidence suggests that innate lymphoid cells (ILCs) play critical roles in the maintenance of tissue homeostasis, defense against pathogens and the pathogenesis of inflammatory diseases, especially at body surface mucosal sites such as the airways. ILCs are activated mainly by cytokines, lipid mediators and neuropeptides that are produced by surrounding cells, and they produce large amounts of cytokines that result in inflammation. In addition, ILCs can change their phenotype in response to stimuli from surrounding cells, which enables them to respond promptly to microenvironmental changes. ILCs exhibit substantial heterogeneity, with different phenotypes and functions depending on the organ and type of inflammation, presumably because of differences in microenvironments. Thus, ILCs may be a sensitive detector of microenvironmental changes, and analysis of their phenotype and function at local sites may enable us to better understand the microenvironment in airway diseases. In this review, we aimed to identify molecules that either positively or negatively influence the function and/or plasticity of ILCs and the sources of the molecules in the airways in order to examine the pathophysiology of airway inflammatory diseases and facilitate the issues to be solved.


Assuntos
Imunidade Adaptativa , Microambiente Celular , Citocinas , Homeostase , Imunidade Inata , Inflamação , Linfócitos , Neuropeptídeos , Fenótipo , Plásticos , Características da População , Doenças Respiratórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA