Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 458-465, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662818

RESUMO

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica
2.
BMC Ecol Evol ; 22(1): 135, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397002

RESUMO

BACKGROUND: Land-use is a major driver of changes in biodiversity worldwide, but studies have overwhelmingly focused on above-ground taxa: the effects on soil biodiversity are less well known, despite the importance of soil organisms in ecosystem functioning. We modelled data from a global biodiversity database to compare how the abundance of soil-dwelling and above-ground organisms responded to land use and soil properties. RESULTS: We found that land use affects overall abundance differently in soil and above-ground assemblages. The abundance of soil organisms was markedly lower in cropland and plantation habitats than in primary vegetation and pasture. Soil properties influenced the abundance of soil biota in ways that differed among land uses, suggesting they shape both abundance and its response to land use. CONCLUSIONS: Our results caution against assuming models or indicators derived from above-ground data can apply to soil assemblages and highlight the potential value of incorporating soil properties into biodiversity models.


Assuntos
Ecossistema , Solo , Biodiversidade , Microbiologia do Solo , Biota
3.
Trends Ecol Evol ; 37(4): 359-370, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35065822

RESUMO

The International Union for Conservation of Nature (IUCN) Red List of Threatened Species is central in biodiversity conservation, but insufficient resources hamper its long-term growth, updating, and consistency. Models or automated calculations can alleviate those challenges by providing standardised estimates required for assessments, or prioritising species for (re-)assessments. However, while numerous scientific papers have proposed such methods, few have been integrated into assessment practice, highlighting a critical research-implementation gap. We believe this gap can be bridged by fostering communication and collaboration between academic researchers and Red List practitioners, and by developing and maintaining user-friendly platforms to automate application of the methods. We propose that developing methods better encompassing Red List criteria, systems, and drivers is the next priority to support the Red List.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Biodiversidade , Comunicação , Extinção Biológica
4.
Nat Ecol Evol ; 5(10): 1338-1349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34400825

RESUMO

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.


Assuntos
Ecossistema , Objetivos , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Humanos
5.
Nat Ecol Evol ; 5(6): 836-844, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33833421

RESUMO

The Convention on Biological Diversity's post-2020 Global Biodiversity Framework will probably include a goal to stabilize and restore the status of species. Its delivery would be facilitated by making the actions required to halt and reverse species loss spatially explicit. Here, we develop a species threat abatement and restoration (STAR) metric that is scalable across species, threats and geographies. STAR quantifies the contributions that abating threats and restoring habitats in specific places offer towards reducing extinction risk. While every nation can contribute towards halting biodiversity loss, Indonesia, Colombia, Mexico, Madagascar and Brazil combined have stewardship over 31% of total STAR values for terrestrial amphibians, birds and mammals. Among actions, sustainable crop production and forestry dominate, contributing 41% of total STAR values for these taxonomic groups. Key Biodiversity Areas cover 9% of the terrestrial surface but capture 47% of STAR values. STAR could support governmental and non-state actors in quantifying their contributions to meeting science-based species targets within the framework.


Assuntos
Conservação dos Recursos Naturais , Animais , Brasil , Colômbia , Indonésia , Madagáscar , México
7.
Nature ; 585(7826): 551-556, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908312

RESUMO

Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it  provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether-and how-humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042-2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34-50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats-such as climate change-must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Política Ambiental/tendências , Atividades Humanas/tendências , Dieta , Dieta Vegetariana/tendências , Abastecimento de Alimentos , Humanos , Desenvolvimento Sustentável/tendências
8.
Proc Biol Sci ; 287(1928): 20200533, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32486986

RESUMO

Global forest assessments use forest area as an indicator of biodiversity status, which may mask below-canopy pressures driving forest biodiversity loss and 'empty forest' syndrome. The status of forest biodiversity is important not only for species conservation but also because species loss can have consequences for forest health and carbon storage. We aimed to develop a global indicator of forest specialist vertebrate populations to improve assessments of forest biodiversity status. Using the Living Planet Index methodology, we developed a weighted composite Forest Specialist Index for the period 1970-2014. We then investigated potential correlates of forest vertebrate population change. We analysed the relationship between the average rate of change of forest vertebrate populations and satellite-derived tree cover trends, as well as other pressures. On average, forest vertebrate populations declined by 53% between 1970 and 2014. We found little evidence of a consistent global effect of tree cover change on forest vertebrate populations, but a significant negative effect of exploitation threat on forest specialists. In conclusion, we found that the forest area is a poor indicator of forest biodiversity status. For forest biodiversity to recover, conservation management needs to be informed by monitoring all threats to vertebrates, including those below the canopy.


Assuntos
Biodiversidade , Florestas , Vertebrados , Animais , Conservação dos Recursos Naturais , Árvores
10.
Glob Chang Biol ; 25(8): 2763-2778, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31009149

RESUMO

Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, we present a fine-resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species-area relationship, to estimate the effect of land-use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land-use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio-economic development can potentially bring extinction risk back to pre-2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land-use change. In this case, the estimated number of species committed to extinction increases by 3.7-4.5 times compared to land-use-only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land-use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre-industrial times is observed.


Assuntos
Biodiversidade , Ecossistema , Mudança Climática , Conservação dos Recursos Naturais , Previsões , Plantas
11.
Conserv Biol ; 33(6): 1360-1369, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30941815

RESUMO

To inform governmental discussions on the nature of a revised Strategic Plan for Biodiversity of the Convention on Biological Diversity (CBD), we reviewed the relevant literature and assessed the framing of the 20 Aichi Biodiversity Targets in the current strategic plan. We asked international experts from nongovernmental organizations, academia, government agencies, international organizations, research institutes, and the CBD to score the Aichi Targets and their constituent elements against a set of specific, measurable, ambitious, realistic, unambiguous, scalable, and comprehensive criteria (SMART based, excluding time bound because all targets are bound to 2015 or 2020). We then investigated the relationship between these expert scores and reported progress toward the target elements by using the findings from 2 global progress assessments (Global Biodiversity Outlook and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). We analyzed the data with ordinal logistic regressions. We found significant positive relationships (p < 0.05) between progress and the extent to which the target elements were perceived to be measurable, realistic, unambiguous, and scalable. There was some evidence of a relationship between progress and specificity of the target elements, but no relationship between progress and ambition. We are the first to show associations between progress and the extent to which the Aichi Targets meet certain SMART criteria. As negotiations around the post-2020 biodiversity framework proceed, decision makers should strive to ensure that new or revised targets are effectively structured and clearly worded to allow the translation of targets into actionable policies that can be successfully implemented nationally, regionally, and globally.


Relación de las Características de los Objetivos Mundiales de Biodiversidad con el Progreso Reportado Resumen Para informar las discusiones gubernamentales sobre la naturaleza de una revisión del Plan Estratégico para la Biodiversidad del Convenio sobre la Diversidad Biológica (CBD, en inglés), revisamos la literatura relevante y evaluamos el marco de 20 Objetivos de Biodiversidad de Aichi en el plan estratégico actual. Le pedimos a expertos internacionales de organizaciones no gubernamentales, de la academia, de agencias gubernamentales, organizaciones internacionales, de institutos de investigación y de la CBD que puntuaran los Objetivos de Aichi y sus elementos constituyentes frente a un conjunto de criterios específicos, medibles, ambiciosos, realistas (basados en SMART [las iniciales en inglés] y excluyendo aquellos limitados por el tiempo, pues todos los objetivos están limitados al 2015 o al 2020), inequívocos, expansibles y completos (excluyendo aquellos limitados por el tiempo). Después investigamos la relación entre los puntajes de estos expertos y el progreso reportado hacia los elementos objetivo usando los resultados de dos valoraciones mundiales del progreso (el Pronóstico Mundial de la Biodiversidad y la Plataforma Intergubernamental de Ciencia y Política sobre la Biodiversidad y los Servicios Ambientales). Analizamos los datos con regresiones logísticas ordinales. Encontramos relaciones positivas significativas (p < 0.05) entre el progreso y el alcance al que fueron percibidos como medibles, realistas, inequívocos y expansibles los elementos objetivo. Hubo algo de evidencia de la relación entre el progreso y la ambición. Somos los primeros en mostrar las asociaciones entre el progreso y la extensión hasta la que los Objetivos de Aichi cumplen con ciertos criterios SMART. Conforme proceden las negociaciones en torno al marco de trabajo de biodiversidad post-2020, quienes toman las decisiones deberían esforzarse por asegurar que los objetivos nuevos o revisados estén estructurados efectivamente y redactados claramente para permitir la traducción de los objetivos hacia políticas factibles que puedan implementarse exitosamente a nivel nacional, regional y mundial.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade
12.
PLoS Biol ; 16(12): e2006841, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30513079

RESUMO

Human use of the land (for agriculture and settlements) has a substantial negative effect on biodiversity globally. However, not all species are adversely affected by land use, and indeed, some benefit from the creation of novel habitat. Geographically rare species may be more negatively affected by land use than widespread species, but data limitations have so far prevented global multi-clade assessments of land-use effects on narrow-ranged and widespread species. We analyse a large, global database to show consistent differences in assemblage composition. Compared with natural habitat, assemblages in disturbed habitats have more widespread species on average, especially in urban areas and the tropics. All else being equal, this result means that human land use is homogenizing assemblage composition across space. Disturbed habitats show both reduced abundances of narrow-ranged species and increased abundances of widespread species. Our results are very important for biodiversity conservation because narrow-ranged species are typically at higher risk of extinction than widespread species. Furthermore, the shift to more widespread species may also affect ecosystem functioning by reducing both the contribution of rare species and the diversity of species' responses to environmental changes among local assemblages.


Assuntos
Agricultura/métodos , Biodiversidade , Conservação dos Recursos Naturais/métodos , Animais , Ecossistema , Humanos , Recursos Naturais
13.
Ecol Evol ; 7(1): 145-188, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28070282

RESUMO

The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.

14.
Science ; 353(6296): 288-91, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418509

RESUMO

Land use and related pressures have reduced local terrestrial biodiversity, but it is unclear how the magnitude of change relates to the recently proposed planetary boundary ("safe limit"). We estimate that land use and related pressures have already reduced local biodiversity intactness--the average proportion of natural biodiversity remaining in local ecosystems--beyond its recently proposed planetary boundary across 58.1% of the world's land surface, where 71.4% of the human population live. Biodiversity intactness within most biomes (especially grassland biomes), most biodiversity hotspots, and even some wilderness areas is inferred to be beyond the boundary. Such widespread transgression of safe limits suggests that biodiversity loss, if unchecked, will undermine efforts toward long-term sustainable development.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Pradaria , Humanos , Dinâmica Populacional , Pressão
15.
Nat Commun ; 7: 12306, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465407

RESUMO

Protected areas are widely considered essential for biodiversity conservation. However, few global studies have demonstrated that protection benefits a broad range of species. Here, using a new global biodiversity database with unprecedented geographic and taxonomic coverage, we compare four biodiversity measures at sites sampled in multiple land uses inside and outside protected areas. Globally, species richness is 10.6% higher and abundance 14.5% higher in samples taken inside protected areas compared with samples taken outside, but neither rarefaction-based richness nor endemicity differ significantly. Importantly, we show that the positive effects of protection are mostly attributable to differences in land use between protected and unprotected sites. Nonetheless, even within some human-dominated land uses, species richness and abundance are higher in protected sites. Our results reinforce the global importance of protected areas but suggest that protection does not consistently benefit species with small ranges or increase the variety of ecological niches.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais
16.
Nature ; 520(7545): 45-50, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832402

RESUMO

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.


Assuntos
Biodiversidade , Atividades Humanas , Animais , Conservação dos Recursos Naturais/tendências , Ecologia/tendências , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Modelos Biológicos , Dinâmica Populacional , Especificidade da Espécie
17.
Science ; 346(6206): 241-4, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25278504

RESUMO

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related "Aichi Targets" to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Extinção Biológica
18.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25143038

RESUMO

Habitat loss and degradation, driven largely by agricultural expansion and intensification, present the greatest immediate threat to biodiversity. Tropical forests harbour among the highest levels of terrestrial species diversity and are likely to experience rapid land-use change in the coming decades. Synthetic analyses of observed responses of species are useful for quantifying how land use affects biodiversity and for predicting outcomes under land-use scenarios. Previous applications of this approach have typically focused on individual taxonomic groups, analysing the average response of the whole community to changes in land use. Here, we incorporate quantitative remotely sensed data about habitats in, to our knowledge, the first worldwide synthetic analysis of how individual species in four major taxonomic groups--invertebrates, 'herptiles' (reptiles and amphibians), mammals and birds--respond to multiple human pressures in tropical and sub-tropical forests. We show significant independent impacts of land use, human vegetation offtake, forest cover and human population density on both occurrence and abundance of species, highlighting the value of analysing multiple explanatory variables simultaneously. Responses differ among the four groups considered, and--within birds and mammals--between habitat specialists and habitat generalists and between narrow-ranged and wide-ranged species.


Assuntos
Biodiversidade , Florestas , Modelos Teóricos , Clima Tropical , Agricultura/métodos , Animais , Ecossistema , Humanos , Densidade Demográfica , Imagens de Satélites
19.
Ecol Evol ; 4(24): 4701-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25558364

RESUMO

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

20.
J Eukaryot Microbiol ; 54(3): 247-62, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17552980

RESUMO

Development of a new species of malacosporean myxozoan (Buddenbrockia allmani n. sp.) in the bryozoan Lophopus crystallinus is described. Early stages, represented by isolated cells or small groups, were observed in the host's body wall or body cavity. Multiplication and rearrangement of cells gave an outer cell layer around a central mass. The outer cells made contact by filopodia and established adherens junctions. Sporoplasmosomes were a notable feature of early stages, but these were lost in subsequent development. Typical malacosporean sacs were formed from these groups by attachment of the inner (luminal) cells by a basal lamina to the outer layer (mural cells). Division of luminal cells gave rise to a population of cells that was liberated into the lumen of the sac. Mitotic spindles in open mitosis and prophase stages of meiosis were observed in luminal cells. Centrioles were absent. Detached luminal cells assembled to form spores with four polar capsules and several valve cells surrounding two sporoplasms with secondary cells. Restoration of sporoplasmosomes occurred in primary sporoplasms. A second type of sac was observed with highly irregular mural cells and stellate luminal cells. A radially striated layer and dense granules in the polar capsule wall, and previous data on 18 rDNA sequences enabled assignment of the species to the genus Buddenbrockia, while specific diagnosis relied on the rDNA data and on sac shape and size.


Assuntos
Briozoários/parasitologia , Eucariotos/ultraestrutura , Animais , Eucariotos/classificação , Eucariotos/fisiologia , Meiose , Microscopia Eletrônica de Transmissão , Mitose , Morfogênese , Esporos de Protozoários/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...