Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(6): 77, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758236

RESUMO

Fulvic acids (FA) are environmentally prevalent components of dissolved organic carbon. Little research has evaluated their potential influence on the bioavailability of herbicides to non-target aquatic plants. This study evaluated the potential impacts of FA on the bioavailability of atrazine (ATZ) to the aquatic plant Lemna minor. Plants were exposed to 0, 15, 30, 60, 125, and 750 µg/L ATZ in media containing three FA concentrations (0, 5, and 15 mg/L) in a factorial study under static conditions. Fronds were counted after 7- and 14-days exposure and intrinsic growth rates (IGR) and total frond yields were calculated for analysis. Atrazine NOAECs and LOAECs within each FA treatment series (0, 5, or 15 mg/L) were identified and EC50s were estimated. NOAEC/LOAECs for yield and IGR were 60/125 µg/L except for yield in the 0 mg/L-FA series (30/60) and IGR in the 5 mg/L-FA series (30/60). NOAEC/LOAECs were 30/60 µg/L for all treatments and both endpoints after 14 days exposure. EC50s ranged from 88.2 to 106.1 µg/L (frond production 7 DAT), 158.0-186.0 µg/L (IGR, 7 DAT), 74.7-86.3 µg/L (frond production, 14 DAT), and 144.1-151.3 µg/L (IGR, 14 DAT). FA concentrations did not influence the toxicity of ATZ.


Assuntos
Araceae , Atrazina , Benzopiranos , Herbicidas , Poluentes Químicos da Água , Herbicidas/toxicidade , Benzopiranos/toxicidade , Atrazina/toxicidade , Araceae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
2.
J Environ Manage ; 343: 118185, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224688

RESUMO

The use of organic amendments to enhance soil health is increasingly being identified as a strategy to improve residential landscapes while also reducing the need for external inputs (e.g., fertilizers, irrigation). Composted biosolids are a re-purposed waste product that can be used in organic amendments to improve the overall sustainability of a municipality by enhancing residential soil carbon content while simultaneously reducing waste materials. However, the biosolids-based feedstock of these compost products has the potential to be a source of organic contaminants. We conducted a laboratory-based soil column experiment to evaluate the potential for different commercially available compost products to act as a source of emerging organic contaminants in residential landscapes. We compared two biosolids-based compost products, a manure-based compost product, and a control (no compost) treatment by irrigating soil columns for 30 days and collecting daily leachate samples to quantify leaching rates of six hormones, eight pharmaceuticals, and seven per- and polyfluoroalkyl substances (PFAS). Detection of hormones and pharmaceuticals was rare, suggesting that compost amendments are likely not a major source of these contaminants to groundwater resources. In contrast, we detected three of the seven PFAS compounds in leachate samples throughout the study. Perfluorohexanoic acid (PFHxA) was more likely to leach from biosolids-based compost treatments than other treatments (p < 0.05) and perfluorobutane sulfonate (PFBS) was only detected in biosolids-based treatments (although PFBS concentrations did not significantly differ among treatments). In contrast, perfluorooctanoic acid (PFOA) was commonly detected across all treatments (including controls), suggesting potential PFOA experimental contamination. Overall, these results demonstrate that commercially available composted biosolids amendments are likely not a major source of hormone and pharmaceutical contamination. The detection of PFHxA at significantly higher concentrations in biosolids treatments suggests that biosolids-based composts may act as sources of PFHxA to the environment. However, concentrations of multiple PFAS compounds found in leachate in this study were lower than concentrations found in known PFAS hotspots. Therefore, there is potential for environmental contamination from PFAS leaching from composted biosolids, but leachate concentrations are low which should be considered in risk-benefit analyses when considering whether or not to use composted biosolids as an organic amendment to enhance residential soil health.


Assuntos
Compostagem , Poluentes do Solo , Solo , Biossólidos , Resíduos/análise , Poluentes do Solo/análise , Preparações Farmacêuticas
3.
Bull Environ Contam Toxicol ; 107(5): 868-875, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34652459

RESUMO

Wastewater reclamation facilities are known sources of emerging contaminants associated with human health and sanitation. This study evaluated the contribution of trace organic contaminants to a previously unmonitored river by water resource reclamation facilities. Six sampling events were conducted on the Reedy River in South Carolina. Sampling locations included sites upstream and downstream of two WRRFs located on the river to examine potential contributions under drought conditions where WRRF effluents comprise a large proportion of total stream flow. Five target analytes were monitored including atrazine, carbamazepine, 17ß-estradiol, perfluorooctanoic acid, and sulfamethoxazole. On a mass basis, the WRRFs contributed additional loadings of carbamazepine ranging from 5.4 g/d to 7.2 g/d (mean: 6.3 ± 0.4 g/d), PFOA ranging from 8.6 to 31.9 g/d (mean: 20.0 ± 4.9), and sulfamethoxazole ranging from 49.4 g/d to 75.1 g/d (mean: 62.1 ± 4.8). 17ß-estradiol was detected once and atrazine was not detected.


Assuntos
Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Rios , South Carolina , Poluentes Químicos da Água/análise , Recursos Hídricos
4.
Water Res ; 170: 115311, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783190

RESUMO

Nutrients and pesticides in agricultural runoff contribute to the degradation of water resources. Nitrates and phosphates can be remediated through the use of treatment systems such as woodchip bioreactors and adsorbent aggregate filters; however, concerns remain over potential effects of pesticides on nutrient removal efficiency in these systems. To test this, we designed laboratory-scale woodchip bioreactors equipped with secondary adsorbent aggregate filters and investigated the capacity of these systems to remediate nutrients when operated under two hydraulic retention times (HRT) and in the presence of commonly used pesticides. The woodchip bioreactors effectively removed over 99% of nitrate per day when operated under a 72 h hydraulic retention time, with the secondary expanded shale aggregate filters consistently reducing phosphate concentrations by 80-87%. Treatment efficacy of both systems was maintained in the presence of the insecticide chlorpyrifos. Reducing HRT in the bioreactors to 21 min decreased nitrate removal efficiency; however, the insecticides bifenthrin, chlorpyrifos, and the herbicide oxyfluorfen were reduced by 76%, 63%, and 31%, respectively. Cultivation approaches led to the isolation of 45 different species from the woodchip bioreactors operated under a 21 min HRT, with Bacillus species being the most prevalent throughout the treatment. By contrast, pesticide application decreased the number and diversity of Bacillus isolates and enriched for Pseudomonas and Exiguobacterium species. Woodchip bioreactors and adsorbent aggregate filters provide effective treatment platforms to remediate agrochemicals, where they maintain treatment efficacy in the presence of pesticides and can be modulated through HRT management to achieve environmental and operational water quality goals.


Assuntos
Desnitrificação , Praguicidas , Reatores Biológicos , Nitratos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...