Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
J Intern Med ; 295(6): 785-803, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38698538

RESUMO

In the last decades, the development of high-throughput molecular assays has revolutionised cancer diagnostics, paving the way for the concept of personalised cancer medicine. This progress has been driven by the introduction of such technologies through biomarker-driven oncology trials. In this review, strengths and limitations of various state-of-the-art sequencing technologies, including gene panel sequencing (DNA and RNA), whole-exome/whole-genome sequencing and whole-transcriptome sequencing, are explored, focusing on their ability to identify clinically relevant biomarkers with diagnostic, prognostic and/or predictive impact. This includes the need to assess complex biomarkers, for example microsatellite instability, tumour mutation burden and homologous recombination deficiency, to identify patients suitable for specific therapies, including immunotherapy. Furthermore, the crucial role of biomarker analysis and multidisciplinary molecular tumour boards in selecting patients for trial inclusion is discussed in relation to various trial concepts, including drug repurposing. Recognising that today's exploratory techniques will evolve into tomorrow's routine diagnostics and clinical study inclusion assays, the importance of emerging technologies for multimodal diagnostics, such as proteomics and in vivo drug sensitivity testing, is also discussed. In addition, key regulatory aspects and the importance of patient engagement in all phases of a clinical trial are described. Finally, we propose a set of recommendations for consideration when planning a new precision cancer medicine trial.


Assuntos
Biomarcadores Tumorais , Neoplasias , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios Clínicos como Assunto , Oncologia/métodos , Oncologia/tendências
2.
Hered Cancer Clin Pract ; 22(1): 6, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741120

RESUMO

BACKGROUND: Colorectal cancers (CRCs) in the Lynch syndromes have been assumed to emerge through an accelerated adenoma-carcinoma pathway. In this model adenomas with deficient mismatch repair have an increased probability of acquiring additional cancer driver mutation(s) resulting in more rapid progression to malignancy. If this model was accurate, the success of colonoscopy in preventing CRC would be a function of the intervals between colonoscopies and mean sojourn time of detectable adenomas. Contrary to expectations, colonoscopy did not decrease incidence of CRC in the Lynch syndromes and shorter colonoscopy intervals have not been effective in reducing CRC incidence. The prospective Lynch Syndrome Database (PLSD) was designed to examine these issues in carriers of pathogenic variants of the mis-match repair (path_MMR) genes. MATERIALS AND METHODS: We examined the CRC and colorectal adenoma incidences in 3,574 path_MLH1, path_MSH2, path_MSH6 and path_PMS2 carriers subjected to regular colonoscopy with polypectomy, and considered the results based on sojourn times and stochastic probability paradigms. RESULTS: Most of the path_MMR carriers in each genetic group had no adenomas. There was no association between incidences of CRC and the presence of adenomas. There was no CRC observed in path_PMS2 carriers. CONCLUSIONS: Colonoscopy prevented CRC in path_PMS2 carriers but not in the others. Our findings are consistent with colonoscopy surveillance blocking the adenoma-carcinoma pathway by removing identified adenomas which might otherwise become CRCs. However, in the other carriers most CRCs likely arised from dMMR cells in the crypts that have an increased mutation rate with increased stochastic chaotic probabilities for mutations. Therefore, this mechanism, that may be associated with no or only a short sojourn time of MSI tumours as adenomas, could explain the findings in our previous and current reports.

4.
Cancer Treat Rev ; 123: 102674, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176220

RESUMO

The Cancer Drug Development Forum (CDDF)'s 'Histology independent drug development - is this the future for cancer drugs?' workshop was set up to explore the current landscape of histology independent drug development, review the current regulatory landscape and propose recommendations for improving the conduct of future trials. The first session considered lessons learnt from previous trials, including innovative solutions for reimbursement. The session explored why overall survival represents the most valuable endpoint, and the importance of duration of response, which can be captured with swimmer and spider plots. The second session on biomarker development and treatment optimisation considered current regulations for companion diagnostics, FDA guidance on histology independent drug development in oncology, and the need to establish cut-offs for the biomarker of tumour mutational burden to identify the patients most likely to benefit from PDL1 treatment. The third session reviewed novel trial designs, including basket, umbrella and platform trials, and statistical approaches of hierarchical modelling where homogeneity between study cohorts enables information to be borrowed between cohorts. The discussion highlighted the need to agree 'common assessment standards' to facilitate pooling of data across studies. In the fourth session, the sharing of data sets was recognised as a key step for improving equity of access to precision medicines across Europe. The session considered how the European Health Data Space (EHDS) could streamline access to medical records, emphasizing the importance of introducing greater accountability into the digital space. In conclusion the workshop proposed 11 recommendations to facilitate histology agnostic drug development.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Desenvolvimento de Medicamentos , Oncologia , Biomarcadores Tumorais
5.
Nucleic Acids Res ; 52(D1): D174-D182, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37962376

RESUMO

JASPAR (https://jaspar.elixir.no/) is a widely-used open-access database presenting manually curated high-quality and non-redundant DNA-binding profiles for transcription factors (TFs) across taxa. In this 10th release and 20th-anniversary update, the CORE collection has expanded with 329 new profiles. We updated three existing profiles and provided orthogonal support for 72 profiles from the previous release's UNVALIDATED collection. Altogether, the JASPAR 2024 update provides a 20% increase in CORE profiles from the previous release. A trimming algorithm enhanced profiles by removing low information content flanking base pairs, which were likely uninformative (within the capacity of the PFM models) for TFBS predictions and modelling TF-DNA interactions. This release includes enhanced metadata, featuring a refined classification for plant TFs' structural DNA-binding domains. The new JASPAR collections prompt updates to the genomic tracks of predicted TF binding sites (TFBSs) in 8 organisms, with human and mouse tracks available as native tracks in the UCSC Genome browser. All data are available through the JASPAR web interface and programmatically through its API and the updated Bioconductor and pyJASPAR packages. Finally, a new TFBS extraction tool enables users to retrieve predicted JASPAR TFBSs intersecting their genomic regions of interest.


Assuntos
Bases de Dados Genéticas , Ligação Proteica , Fatores de Transcrição , Animais , Humanos , Camundongos , Bases de Dados Genéticas/normas , Bases de Dados Genéticas/tendências , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Plantas/genética
6.
Hered Cancer Clin Pract ; 21(1): 19, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821984

RESUMO

The recognition of dominantly inherited micro-satellite instable (MSI) cancers caused by pathogenic variants in one of the four mismatch repair (MMR) genes MSH2, MLH1, MSH6 and PMS2 has modified our understanding of carcinogenesis. Inherited loss of function variants in each of these MMR genes cause four dominantly inherited cancer syndromes with different penetrance and expressivities: the four Lynch syndromes. No person has an "average sex "or a pathogenic variant in an "average Lynch syndrome gene" and results that are not stratified by gene and sex will be valid for no one. Carcinogenesis may be a linear process from increased cellular division to localized cancer to metastasis. In addition, in the Lynch syndromes (LS) we now recognize a dynamic balance between two stochastic processes: MSI producing abnormal cells, and the host's adaptive immune system's ability to remove them. The latter may explain why colonoscopy surveillance does not reduce the incidence of colorectal cancer in LS, while it may improve the prognosis. Most early onset colon, endometrial and ovarian cancers in LS are now cured and most cancer related deaths are after subsequent cancers in other organs. Aspirin reduces the incidence of colorectal and other cancers in LS. Immunotherapy increases the host immune system's capability to destroy MSI cancers. Colonoscopy surveillance, aspirin prevention and immunotherapy represent major steps forward in personalized precision medicine to prevent and cure inherited MSI cancer.

7.
Cancers (Basel) ; 15(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37627152

RESUMO

BACKGROUND: Statistical associations of numerous single nucleotide polymorphisms with breast cancer (BC) have been identified in genome-wide association studies (GWAS). Recent evidence suggests that a Polygenic Risk Score (PRS) can be a useful risk stratification instrument for a BC screening strategy, and a PRS test has been developed for clinical use. The performance of the PRS is yet unknown in the Norwegian population. AIM: To evaluate the performance of PRS models for BC in a Norwegian dataset. METHODS: We investigated a sample of 1053 BC cases and 7094 controls from different regions of Norway. PRS values were calculated using four PRS models, and their performance was evaluated by the area under the curve (AUC) and the odds ratio (OR). The effect of the PRS on the age of onset of BC was determined by a Cox regression model, and the lifetime absolute risk of developing BC was calculated using the iCare tool. RESULTS: The best performing PRS model included 3820 SNPs, which yielded an AUC = 0.625 and an OR = 1.567 per one standard deviation increase. The PRS values of the samples correlate with an increased risk of BC, with a hazard ratio of 1.494 per one standard deviation increase (95% confidence interval of 1.406-1.588). The individuals in the highest decile of the PRS have at least twice the risk of developing BC compared to the individuals with a median PRS. The results in this study with Norwegian samples are coherent with the findings in the study conducted using Estonian and UK Biobank samples. CONCLUSION: The previously validated PRS models have a similar observed accuracy in the Norwegian data as in the UK and Estonian populations. A PRS provides a meaningful association with the age of onset of BC and lifetime risk. Therefore, as suggested in Estonia, a PRS may also be integrated into the screening strategy for BC in Norway.

8.
Int J Cancer ; 153(10): 1819-1828, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37551617

RESUMO

Genome-scale screening experiments in cancer produce long lists of candidate genes that require extensive interpretation for biological insight and prioritization for follow-up studies. Interrogation of gene lists frequently represents a significant and time-consuming undertaking, in which experimental biologists typically combine results from a variety of bioinformatics resources in an attempt to portray and understand cancer relevance. As a means to simplify and strengthen the support for this endeavor, we have developed oncoEnrichR, a flexible bioinformatics tool that allows cancer researchers to comprehensively interrogate a given gene list along multiple facets of cancer relevance. oncoEnrichR differs from general gene set analysis frameworks through the integration of an extensive set of prior knowledge specifically relevant for cancer, including ranked gene-tumor type associations, literature-supported proto-oncogene and tumor suppressor gene annotations, target druggability data, regulatory interactions, synthetic lethality predictions, as well as prognostic associations, gene aberrations and co-expression patterns across tumor types. The software produces a structured and user-friendly analysis report as its main output, where versions of all underlying data resources are explicitly logged, the latter being a critical component for reproducible science. We demonstrate the usefulness of oncoEnrichR through interrogation of two candidate lists from proteomic and CRISPR screens. oncoEnrichR is freely available as a web-based service hosted by the Galaxy platform (https://oncotools.elixir.no), and can also be accessed as a stand-alone R package (https://github.com/sigven/oncoEnrichR).


Assuntos
Neoplasias , Proteômica , Humanos , Biologia Computacional/métodos , Software , Neoplasias/genética
9.
Mol Oncol ; 17(11): 2432-2450, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37622176

RESUMO

Patients with localised, high-risk gastrointestinal stromal tumours (GIST) benefit from adjuvant imatinib treatment. Still, approximately 40% of patients relapse within 3 years after adjuvant therapy and the clinical and histopathological features currently used for risk classification cannot precisely predict poor outcomes after standard treatment. This study aimed to identify genomic and transcriptomic profiles that could be associated with disease relapse and thus a more aggressive phenotype. Using a multi-omics approach, we analysed a cohort of primary tumours from patients with untreated, resectable high-risk GISTs. We compared patients who developed metastatic disease within 3 years after finishing adjuvant imatinib treatment and patients without disease relapse after more than 5 years of follow-up. Combining genomics and transcriptomics data, we identified somatic mutations and deregulated mRNA and miRNA genes intrinsic to each group. Our study shows that increased chromosomal instability (CIN), including chromothripsis and deregulated kinetochore and cell cycle signalling, separates high-risk samples according to metastatic potential. The increased CIN seems to be an intrinsic feature for tumours that metastasise and should be further validated as a novel prognostic biomarker for high-risk GIST.


Assuntos
Antineoplásicos , Tumores do Estroma Gastrointestinal , Humanos , Mesilato de Imatinib/uso terapêutico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Ciclo Celular , Recidiva , Antineoplásicos/uso terapêutico
10.
PLoS One ; 18(7): e0286330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37467208

RESUMO

Many high-throughput sequencing datasets can be represented as objects with coordinates along a reference genome. Currently, biological investigations often involve a large number of such datasets, for example representing different cell types or epigenetic factors. Drawing overall conclusions from a large collection of results for individual datasets may be challenging and time-consuming. Meaningful interpretation often requires the results to be aggregated according to metadata that represents biological characteristics of interest. In this light, we here propose the hierarchical Genomic Suite HyperBrowser (hGSuite), an open-source extension to the GSuite HyperBrowser platform, which aims to provide a means for extracting key results from an aggregated collection of high-throughput DNA sequencing data. The hGSuite utilizes a metadata-informed data cube to calculate various statistics across the multiple dimensions of the datasets. With this work, we show that the hGSuite and its associated data cube methodology offers a quick and accessible way for exploratory analysis of large genomic datasets. The web-based toolkit named hGsuite Hyperbrowser is available at https://hyperbrowser.uio.no/hgsuite under a GPLv3 license.


Assuntos
Metadados , Software , Genômica/métodos , Genoma , Internet
11.
Cell ; 186(1): 32-46.e19, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608656

RESUMO

We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.


Assuntos
Genoma Humano , Humanos , Europa (Continente) , Variação Genética , Países Escandinavos e Nórdicos , Reino Unido , População Branca/genética , População Branca/história , Migração Humana
12.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36573326

RESUMO

MOTIVATION: There is a rapidly growing interest in high-throughput drug combination screening to identify synergizing drug interactions for treatment of various maladies, such as cancer and infectious disease. This creates the need for pipelines that can be used to design such screens, perform quality control on the data and generate data files that can be analyzed by synergy-finding bioinformatics applications. RESULTS: screenwerk is an open-source, end-to-end modular tool available as an R-package for the design and analysis of drug combination screens. The tool allows for a customized build of pipelines through its modularity and provides a flexible approach to quality control and data analysis. screenwerk is adaptable to various experimental requirements with an emphasis on precision medicine. It can be coupled to other R packages, such as bayesynergy, to identify synergistic and antagonistic drug interactions in cell lines or patient samples. screenwerk is scalable and provides a complete solution for setting up drug sensitivity screens, read raw measurements and consolidate different datasets, perform various types of quality control and analyze, report and visualize the results of drug sensitivity screens. AVAILABILITY AND IMPLEMENTATION: The R-package and technical documentation is available at https://github.com/Enserink-lab/screenwerk; the R source code is publicly available at https://github.com/Enserink-lab/screenwerk under GNU General Public License v3.0; bayesynergy is accessible at https://github.com/ocbe-uio/bayesynergy. Selected modules are available through Galaxy, an open-source platform for FAIR data analysis at https://oncotools.elixir.no. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Documentação , Software , Combinação de Medicamentos , Análise de Dados , Ensaios de Triagem em Larga Escala
13.
Cancer Rep (Hoboken) ; 6(2): e1736, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36251678

RESUMO

Vemurafenib-induced drug resistance in melanoma has been linked to receptor tyrosine kinase (RTK) upregulation. The MITF and SOX10 genes play roles as master regulators of melanocyte and melanoma development. Here, we aimed to explore the complex mechanisms behind the MITF/SOX10-controlled RTK-induced drug resistance in melanoma. To achieve this, we used a number of molecular techniques, including melanoma patient data from TCGA, vemurafenib-resistant melanoma cell lines, and knock-down studies. The melanoma cell lines were classified as proliferative or invasive based upon their MITF/AXL expression activity. We measured the change of expression activity for MITF/SOX10 and their receptor (AXL/ERBB3) and ligand (NRG1/GAS6) targets known to be involved in RTK-induced drug resistance after vemurafenib treatment. We find that melanoma cell lines characterized as proliferative (high MITF low AXL), transform into an invasive (low MITF, high AXL) cell state after vemurafenib resistance, indicating novel feedback loops and advanced compensatory regulation mechanisms between the master regulators, receptors, and ligands involved in vemurafenib-induced resistance. Together, our data disclose fine-tuned mechanisms involved in RTK-facilitated vemurafenib resistance that will be challenging to overcome by using single drug targeting strategies against melanoma.


Assuntos
Melanoma , Fosfatidilinositol 3-Quinases , Humanos , Vemurafenib/uso terapêutico , Fosfatidilinositol 3-Quinases/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Melanoma/tratamento farmacológico , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Tirosina/uso terapêutico
14.
Front Oncol ; 12: 1040730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523963

RESUMO

Introduction: Multiple myeloma (MM) is a heterogeneous disease where cancer-driver mutations and aberrant signaling may lead to disease progression and drug resistance. Drug responses vary greatly, and there is an unmet need for biomarkers that can guide precision cancer medicine in this disease. Methods: To identify potential predictors of drug sensitivity, we applied integrated data from drug sensitivity screening, mutational analysis and functional signaling pathway profiling in 9 cell line models of MM. We studied the sensitivity to 33 targeted drugs and their association with the mutational status of cancer-driver genes and activity level of signaling proteins. Results: We found that sensitivity to mitogen-activated protein kinase kinase 1 (MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with mutations in NRAS/KRAS, and PI3K family genes, respectively. Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1), as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low sensitivity to MEK inhibitors. Discussion: Taken together, this study shows that mutational status and signaling protein profiling might be used in further studies to predict drug sensitivities and identify resistance markers in MM.

15.
Cancers (Basel) ; 14(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36428697

RESUMO

Background: Genetic testing for hereditary cancers is inconsistently applied within the healthcare systems in Latin America. In Peru, the prevalence and spectrum of cancer-predisposing germline variants is thus poorly characterized. Purpose: To determine the spectrum and prevalence of cancer-predisposing germline variants and variants of uncertain significance (VUS) in high-risk individuals located in a Peruvian low-resource setting city. Methods: Individuals presenting clinical criteria for hereditary cancer syndromes or being unaffected with familial history of cancer were included in the study. Samples from a total of 84 individuals were subjected to a high-throughput DNA sequencing assay that targeted a panel of 94 cancer predisposition genes. The pathogenicity of detected germline variants was classified according to the established American College of Medical Genetics and Genomics (ACMG) criteria. All pathogenic variants were validated by cycling temperature capillary electrophoresis. Results: We identified a total of eight pathogenic variants, found in 19 out of 84 individuals (23%). Pathogenic variants were identified in 24% (10/42) of unaffected individuals with family history of cancer and in 21% (9/42) of individuals with a cancer diagnosis. Pathogenic variants were identified in eight genes: RET (3), BRCA1 (3), SBDS (2), SBDS/MLH1 (4), MLH1 (4), TP53 (1), FANCD2 (1), DDB2/FANCG (1). In cancer cases, all colon cancer cases were affected by pathogenic variants in MLH1 and SBDS genes, while 20% (2/10) of the thyroid cancer cases by RET c.1900T>C variants were affected. One patient with endometrial cancer (1/3) had a double heterozygous pathogenic variant in DDB2 and FANCG genes, while one breast cancer patient (1/14) had a pathogenic variant in TP53 gene. Overall, each individual presented at least 17 VUS, totaling 1926 VUS for the full study population. Conclusion: We describe the first genetic characterization in a low-resource setting population where genetic testing is not yet implemented. We identified multiple pathogenic germline variants in clinically actionable predisposition genes, that have an impact on providing an appropriate genetic counselling and clinical management for individuals and their relatives who carry these variants. We also reported a high number of VUS, which may indicate variants specific for this population and may require a determination of their clinical significance.

16.
Curr Biol ; 32(21): 4743-4751.e6, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36182700

RESUMO

Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.


Assuntos
Peste , Humanos , Peste/epidemiologia , Peste/genética , Pandemias/história , Metagenômica , Genoma Bacteriano , Filogenia
17.
J Transl Med ; 20(1): 419, 2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089578

RESUMO

BACKGROUND: This clinical trial evaluated a novel telomerase-targeting therapeutic cancer vaccine, UV1, in combination with ipilimumab, in patients with metastatic melanoma. Translational research was conducted on patient-derived blood and tissue samples with the goal of elucidating the effects of treatment on the T cell receptor repertoire and tumor microenvironment. METHODS: The trial was an open-label, single-center phase I/IIa study. Eligible patients had unresectable metastatic melanoma. Patients received up to 9 UV1 vaccinations and four ipilimumab infusions. Clinical responses were assessed according to RECIST 1.1. Patients were followed up for progression-free survival (PFS) and overall survival (OS). Whole-exome and RNA sequencing, and multiplex immunofluorescence were performed on the biopsies. T cell receptor (TCR) sequencing was performed on the peripheral blood and tumor tissues. RESULTS: Twelve patients were enrolled in the study. Vaccine-specific immune responses were detected in 91% of evaluable patients. Clinical responses were observed in four patients. The mPFS was 6.7 months, and the mOS was 66.3 months. There was no association between baseline tumor mutational burden, neoantigen load, IFN-γ gene signature, tumor-infiltrating lymphocytes, and response to therapy. Tumor telomerase expression was confirmed in all available biopsies. Vaccine-enriched TCR clones were detected in blood and biopsy, and an increase in the tumor IFN-γ gene signature was detected in clinically responding patients. CONCLUSION: Clinical responses were observed irrespective of established predictive biomarkers for checkpoint inhibitor efficacy, indicating an added benefit of the vaccine-induced T cells. The clinical and immunological read-out warrants further investigation of UV1 in combination with checkpoint inhibitors. Trial registration Clinicaltrials.gov identifier: NCT02275416. Registered October 27, 2014. https://clinicaltrials.gov/ct2/show/NCT02275416?term=uv1&draw=2&rank=6.


Assuntos
Melanoma , Telomerase , Humanos , Ipilimumab/farmacologia , Ipilimumab/uso terapêutico , Melanoma/patologia , Microambiente Tumoral , Vacinação
18.
Trends Pharmacol Sci ; 43(11): 973-985, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36163057

RESUMO

Functional precision medicine is a new, emerging area that can guide cancer treatment by capturing information from direct perturbations of tumor-derived, living cells, such as by drug sensitivity screening. Precision cancer medicine as currently implemented in clinical practice has been driven by genomics, and current molecular tumor boards rely extensively on genomic characterization to advise on therapeutic interventions. However, genomic biomarkers can only guide treatment decisions for a fraction of the patients. In this review we provide an overview of the current state of functional precision medicine, highlight advances for drug-sensitivity screening enabled by cell culture models, and discuss how artificial intelligence (AI) can be coupled to functional precision medicine to guide patient stratification.


Assuntos
Neoplasias , Medicina de Precisão , Inteligência Artificial , Biomarcadores Tumorais , Técnicas de Cultura de Células , Detecção Precoce de Câncer , Humanos , Neoplasias/tratamento farmacológico
19.
Genome Med ; 14(1): 86, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948919

RESUMO

BACKGROUND: Subclonal evolution during primary breast cancer treatment is largely unexplored. We aimed to assess the dynamic changes in subclonal composition of treatment-naïve breast cancers during neoadjuvant chemotherapy. METHODS: We performed whole exome sequencing of tumor biopsies collected before, at therapy switch, and after treatment with sequential epirubicin and docetaxel monotherapy in 51 out of 109 patients with primary breast cancer, who were included in a prospectively registered, neoadjuvant single-arm phase II trial. RESULTS: There was a profound and differential redistribution of subclones during epirubicin and docetaxel treatment, regardless of therapy response. While truncal mutations and main subclones persisted, smaller subclones frequently appeared or disappeared. Reassessment of raw data, beyond formal mutation calling, indicated that the majority of subclones seemingly appearing during treatment were in fact present in pretreatment breast cancers, below conventional detection limits. Likewise, subclones which seemingly disappeared were still present, below detection limits, in most cases where tumor tissue remained. Tumor mutational burden (TMB) dropped during neoadjuvant therapy, and copy number analysis demonstrated specific genomic regions to be systematically lost or gained for each of the two chemotherapeutics. CONCLUSIONS: Sequential epirubicin and docetaxel monotherapy caused profound redistribution of smaller subclones in primary breast cancer, while early truncal mutations and major subclones generally persisted through treatment. TRIAL REGISTRATION: ClinicalTrials.gov, NCT00496795 , registered on July 4, 2007.


Assuntos
Neoplasias da Mama , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Evolução Clonal , Ciclofosfamida , Docetaxel/uso terapêutico , Epirubicina , Feminino , Humanos , Terapia Neoadjuvante , Taxoides/efeitos adversos , Taxoides/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...