Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Adv Res ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37989471

RESUMO

INTRODUCTION: Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES: We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS: TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS: In MPP+-induced cell model, TBN (30-300 µM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION: TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.

3.
Front Pharmacol ; 14: 1181226, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256236

RESUMO

Background: Traditional Chinese medicines exhibit promising preventive effects on Alzheimer's disease. Chaihu Shugan San (CSS) is a well-known traditional herbal formula whose several kinds of ingredients have the potential of ameliorating Alzheimer's disease. The present study aimed to evaluate the effects of CSS on the microbiota-gut-brain axis and cognitive deficits of senescence-accelerated mouse prone 8 (SAMP8) mice as well as investigate the underlying mechanisms. Methods: Thirty 5-month-old SAMP8 mice were randomly divided into the model group (SAMP8), CSS low-dose treatment group (CSSL), and CSS high-dose treatment group (CSSH). Ten SAMR1 mice were used as the normal control, and ten SAMP8 mice treated with donepezil were used as the positive control of cognitive function. CSS was orally administrated to SAMP8 mice for 8 weeks. The Morris water maze test was used to evaluate cognitive function. Histological staining was used to observe neuronal injury and Aß deposition. Transmission electron microscopy was used to observe the synaptic ultrastructure. 16S rRNA gene analysis was performed to measure the changes in intestinal microbiota. Results: The results showed that CSS significantly improved the learning function and memory deficits of aged SAMP8 mice in the Morris water maze examination. CSS ameliorated neuronal injury, synaptic injuries, and Aß deposition in the brain of SAMP8 mice. In addition, CSS also significantly improved microbiota composition in terms of elevating Lactobacillus reuteri and decreasing Staphylococcus xylosus in the feces of aged SAMP8 mice. Conclusion: These findings suggested that CSS might have a preventive potential for cognitive deficits in aging through regulating gut microbiota, which paved the way for the application of CSS for prevention and therapeutic purposes for mild cognitive impairment as well as Alzheimer's disease.

4.
J Org Chem ; 88(7): 4317-4324, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893742

RESUMO

Herein, we report a concise asymmetric total synthesis of isopavine alkaloids, which feature a special azabicyclo[3.2.2]nonane tetracyclic skeleton. The key steps include iridium-catalyzed asymmetric hydrogenation of unsaturated carboxylic acids, Curtius rearrangement, and Eschweiler-Clarke methylation, which enable an enantioselective approach to isopavine alkaloids in 6-7 linear steps. Furthermore, for the first time, isopavine alkaloids, especially (-)-reframidine (3), are found to display effective antiproliferative effects on various cancer cell lines.


Assuntos
Alcaloides , Alcaloides/farmacologia , Ácidos Carboxílicos , Hidrogenação , Irídio , Estereoisomerismo
5.
Front Chem ; 10: 1094019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583151

RESUMO

Colchicine is a bioactive alkaloid originally from Colchicum autumnale and possesses excellent antiproliferative activity. However, colchicine-associated severe toxicity, gastrointestinal side effects in particular, limits its further therapeutic use. In the current study, we thus designed and synthesized a novel hybrid (CMH) by splicing colchicine and magnolol, a multifunctional polyphenol showing favorable gastrointestinal protection. The antitumor activity of CMH in Lewis lung carcinoma (LLC) was then evaluated in vitro and in vivo. Biologically, CMH inhibited the growth of LLC cells with an IC50 of 0.26 µM, 100 times more potently than cisplatin (26.05 µM) did. Meanwhile, the cytotoxicity of CMH was 10-fold lower than that of colchicine in normal human lung cells (BEAS-2B). In C57BL/6 mice xenograft model, CMH (0.5 mg/kg) worked as efficacious as colchicine (0.5 mg/kg) to inhibit tumor growth and 2 times more potently than cisplatin (1 mg/kg). In terms of mortality, 7 out of 10 mice died in colchicine group (0.75 mg/kg), while no death was observed in groups receiving CMH or cisplatin at 0.75 mg/kg. Mechanistic studies using Western blot revealed that CMH dose-dependently suppressed the protein expression of phosphorylated ERK. Molecular docking analysis further indicated that CMH was well fitted in the colchicine binding site of tubulin and formed several hydrogen bonds with tubulin protein. These results enable our novel hybrid CMH as a potential antineoplastic agent with lower toxicity, and provide perquisites for further investigation to confirm the therapeutic potentiality of this novel hybrid.

6.
Nat Prod Res ; : 1-10, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302171

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV), is a life-threatening infectious condition. Acute lung injury is a common complication in patients with COVID-19. 3-chymotrypsin-like protease (3CLpro) of 2019-nCoV and neutrophil elastase are critical targets of COVID-19 and acute lung injury, respectively. Colchicine and magnolol are reported to exert inhibitory effects on inflammatory response, the severe comorbidity in both COVID-19 and acute lung injury. We thus designed and synthesized a series of novel colchicine-magnolol hybrids based on a two-step synthetic sequence. It was found that these novel hybrids provided unexpected inhibition on 3CLpro and neutrophil elastase, a bioactivity that colchicine and magnolol did not possess. These findings not only provide perquisites for further in vitro and in vivo investigation to confirm the therapeutic potentiality of novel colchicine-magnolol hybrids, but also suggest that the concurrent inhibition of 3CLpro and neutrophil elastase may enable novel colchicine-magnolol hybrids as effective multi-target drug compounds.

7.
Transl Neurosci ; 13(1): 369-378, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36304098

RESUMO

Oxidative stress is considered as an important mechanism underlying the pathology of neurodegenerative disorders. In this study, we utilized an in vitro model where oxidative stress process was evoked by exogenous hydrogen peroxide (H2O2) in HT22 murine hippocampal neurons and evaluated the neuroprotective effects of geissoschizine methyl ether (GME), a naturally occurring alkaloid from the hooks of Uncaria rhynchophylla (Miq.) Jacks. After a 24 h H2O2 (350 µM) insult, a significant decrease in cell survival and a sharp increase in intracellular reactive oxygen species were observed in HT22 cells. Encouragingly, GME (10-200 µM) effectively reversed these abnormal cellular changes induced by H2O2. Moreover, mechanistic studies using Western blot revealed that GME inhibited the increase of phospho-ERK protein expression, but not phospho-p38, caused by H2O2. Molecular docking simulation further revealed a possible binding mode that GME inhibited ERK protein, showing that GME favorably bound to ERK via multiple hydrophobic and hydrogen bond interactions. These findings indicate that GME provide effective neuroprotection via inhibiting ERK pathway and also encourage further ex vivo and in vivo pharmacological investigations of GME in treating oxidative stress-mediated neurological disorders.

8.
Biol Pharm Bull ; 44(12): 1872-1877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34853270

RESUMO

FMS-like tyrosine kinase 3 (FLT3) plays a very important role in regulating the proliferation, differentiation and survival of normal hematopoietic stem cells. Internal tandem duplications of the FLT3 gene (FLT3-ITD) mutations are present in 25% of all acute myeloid leukemia (AML) patients and are frequently associated with adverse clinical outcomes. Therefore, FLT3-ITD is a promising target for the treatment of AML. The use of covalent virtual screenings has shown that efficient rational approaches for the rapid discovery of new drugs scaffold. Herein, we report a hybrid virtual screening strategy that led to the discovery of FLT3 inhibitors. Using the combination of non-covalent docking and covalent docking, 8 compounds were found to inhibit FLT3, and G856-8335, S346-0154 are also effective against mutant FLT3. These two compounds also show selectivity to receptor tyrosine kinase (C-KIT), which has the potential for optimization. And this work can be extended to the screening of other covalent inhibitors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo , Antineoplásicos/uso terapêutico , Descoberta de Drogas/métodos , Humanos , Leucemia Mieloide Aguda/genética , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
9.
ACS Chem Neurosci ; 12(13): 2462-2477, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156230

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, a multitarget-directed ligands (MTDLs) strategy has been developed to treat AD. We have previously designed and synthesized dimeric tacrine(10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognitive-enhancing ability in AD animal models. In this study, A10E could prevent cognitive impairments in APP/PS1 transgenic mice and ß-amyloid (Aß) oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aß production and deposition, alleviate neuroinflammation, enhance BDNF expression, and elevate cholinergic neurotransmission in vivo. At nanomolar concentrations, A10E could inhibit Aß oligomers-induced neurotoxicity via the activation of tyrosine kinase receptor B (TrkB)/Akt pathway in SH-SY5Y cells. Furthermore, Aß oligomerization and fibrillization could be directly disrupted by A10E. Importantly, A10E at high concentrations did not produce obvious hepatotoxicity. Our results indicated that A10E could produce anti-AD neuroprotective effects via the inhibition of Aß aggregation, the activation of the BDNF/TrkB pathway, the alleviation of neuroinflammation, and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results also suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.


Assuntos
Doença de Alzheimer , Tacrina , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Animais , Inibidores da Colinesterase/farmacologia , Humanos , Ligantes , Camundongos , Tacrina/farmacologia
10.
J Neurochem ; 158(6): 1381-1393, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33930191

RESUMO

Neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, are devastating diseases in the elderly world, which are closely associated with progressive neuronal loss induced by a variety of genetic and/or environmental factors. Unfortunately, currently available treatments for neurodegenerative disorders can only relieve the symptoms but not modify the pathological processes. Over the past decades, our group by collaborating with Profs. Yuan-Ping Pang and Paul R. Carlier has developed three series of homo/hetero dimeric acetylcholinesterase inhibitors derived from tacrine and/or huperzine A. The representative dimers bis(3)-Cognitin (B3C), bis(12)-hupyridone, and tacrine(10)-hupyridone might possess disease-modifying effects through the modulation of N-methyl-d-aspartic acid receptors, the activation of myocyte enhancer factor 2D gene transcription, and the promotion of neurotrophic factor secretion. In this review, we summarize that the representative dimers, such as B3C, provide neuroprotection against a variety of neurotoxins via multiple targets, including the inhibitions of N-methyl-d-aspartic acid receptor with pathological-activated potential, neuronal nitric oxide synthase, and ß-amyloid cascades synergistically. More importantly, B3C might offer disease-modifying potentials by activating myocyte enhancer factor 2D transcription, inducing neuritogenesis, and promoting the expressions of neurotrophic factors in vitro and in vivo. Taken together, the novel dimers might offer synergistic disease-modifying effects, proving that dimerization might serve as one of the strategies to develop new generation of therapeutics for neurodegenerative disorders.


Assuntos
Acetilcolinesterase/metabolismo , Alcaloides/administração & dosagem , Inibidores da Colinesterase/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Sesquiterpenos/administração & dosagem , Tacrina/administração & dosagem , Alcaloides/química , Animais , Inibidores da Colinesterase/química , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos/tendências , Humanos , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/enzimologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Sesquiterpenos/química , Tacrina/química
11.
Eur J Med Chem ; 218: 113356, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33773287

RESUMO

Anti-cancer immunotherapy, which includes cellular immunotherapy, immune checkpoint inhibitors and cancer vaccines, has transformed the treatment strategies of several malignancies in the past decades. Immune checkpoints blockade (ICB) is the most commonly tested therapy and has the potential to induce a durable immune response in different types of cancers. However, all approved immune checkpoint inhibitors (ICIs) are monoclonal antibodies (mAbs), which are fraught with disadvantages including lack of oral bioavailability, prolonged tissue retention and poor membrane permeability. Therefore, the research focus has shifted to developing small molecule inhibitors to obviate the limitations of mAbs. Given the complexity of the tumor micro-environment (TME), the combination of ICIs with various small molecule agonists/inhibitors are currently being tested in clinical trials to improve treatment outcomes and prevent tumor recurrence. In this review, we have summarized the mechanisms and therapeutic potential of several molecular targets, along with the current status of small molecule inhibitors.


Assuntos
Antineoplásicos/farmacologia , Imunoterapia , Neoplasias/terapia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Humanos , Neoplasias/imunologia , Bibliotecas de Moléculas Pequenas/química
12.
Eur J Med Chem ; 213: 113170, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454550

RESUMO

Tumor immunotherapy has made great progress in recent years. In the tumor microenvironment, the binding of PD-1 and its ligand PD-L1 can promote tumor immune escape and tumor survival. Clinical studies have indicated that antibodies blocking PD-1 and PD-L1 have reliable effects on many advanced malignant tumors. However, no small-molecule inhibitors have been approved so far, indicating that the development of marketable small-molecules PD-1/PD-L1 targeted therapy drugs is a challenging process. Small-molecule inhibitors can overcome the limitations of monoclonal antibodies, including poor oral bioavailability, high cost, poor tissue and tumor penetration and long half-life, which prompt researchers to turn their attention to the development of peptide molecules and small-molecule inhibitors modulating PD-1/PD-L1 to overcome some disadvantages of monoclonal antibodies or targeting PD-L1 protein degradation as potential alternatives or supplements. In this review, we will focus on the peptide-based and nonpeptidic molecules against PD-1/PD-L1 base on the structural classification. More importantly, we also focus on the latest research progress of small-molecules mediated PD-L1 degradation mechanism.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Peptídeos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/síntese química , Inibidores de Checkpoint Imunológico/química , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química
13.
Neurochem Int ; 139: 104807, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32711021

RESUMO

The biosynthesis of berberine alkaloids is thought to begin with the demethylation of berberine followed by methylation reactions to generate other type berberine alkaloids. This seemingly expeditious way to access berberine alkaloids has been stagnated for over half a century due to certain vexing synthetic problems, such as low isolated yield, complex operations and toxic reagents. We further investigated this bioinspired semi-synthesis strategy and significantly improved the synthetic efficacy, by providing a practical synthetic process for demethyleneberberine (DMB), columbamine and palmatine. Furthermore, we found that DMB (IC50, 9.06 µM) inhibited the activity of monoamine oxidase B (MAO-B), an enzyme that deaminates dopamine and is particularly involved in the pathology of Parkinson's disease. Besides, columbamine was able to decrease MAO-B activity by approximately 40%. These findings provide perquisites for further in vivo investigation to confirm the therapeutic potentiality of berberine alkaloids, DMB in particular.


Assuntos
Alcaloides de Berberina/síntese química , Berberina/análogos & derivados , Inibidores da Monoaminoxidase/síntese química , Monoaminoxidase/metabolismo , Extratos Vegetais/síntese química , Berberina/síntese química , Berberina/farmacologia , Alcaloides de Berberina/farmacologia , Sítios de Ligação/fisiologia , Relação Dose-Resposta a Droga , Humanos , Inibidores da Monoaminoxidase/farmacologia , Extratos Vegetais/farmacologia
14.
Eur J Pharmacol ; 876: 173065, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171792

RESUMO

Inhibition of Aß aggregation and neurotoxicity has been developed as an attractive therapeutic strategy to combat Alzheimer's disease (AD). Bis(propyl)-cognitin (B3C) is a multifunctional dimer derived from tacrine. Herein, the anti-aggregation and disassembly effects of B3C on Aß, together with the neuroprotective effects and underlying mechanisms of B3C against Aß-induced neurotoxicity were investigated in silico, in vitro and in vivo. Data from Thioflavin-T fluorescence and atomic force microscopy assays indicated that B3C (1-10 µM), but not its monomer tacrine, greatly inhibited the formation of Aß fibrils and disaggregated pre-formed mature Aß fibrils. Comparative molecular dynamics simulation results revealed a possible binding mode that prevented Aß fibrils formation, showing that B3C favorably bound to Aß via hydrophobic interactions. Additionally, B3C was able to block the neurotoxicity caused by Aß fibrils in cultured PC12 cells. Very encouragingly, B3C (0.3 and 0.45 mg/kg) markedly alleviated the cognitive impairments in rats insulted by intra-hippocampal injection of Aß1-42 fibrils, more potently than tacrine (1 and 2 mg/kg). Furthermore, mechanistic studies demonstrated that B3C reversed the inhibition of phospho-GSK3ß at Ser9 site in vitro and in vivo caused by Aß, suggesting the neuroprotection of B3C was achieved through the inhibition of GSK3ß pathway. These findings indicate that B3C could serve as an effective inhibitor of Aß aggregation and neurotoxicity, and provide novel molecular insights into the potential application of B3C in AD prevention and treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Tacrina/análogos & derivados , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Amiloide/toxicidade , Peptídeos beta-Amiloides/toxicidade , Animais , Simulação por Computador , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Simulação de Dinâmica Molecular , Células PC12 , Fragmentos de Peptídeos/toxicidade , Agregação Patológica de Proteínas/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Tacrina/farmacologia
15.
Chem Biol Interact ; 325: 109020, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32092300

RESUMO

Overactivation of N-methyl-D-aspartate (NMDA) receptors has been associated with neurodegenerative disorders such as Alzheimer's disease (AD), cerebral vascular disorders and amyotrophic lateral sclerosis (ALS). We have previously designed and synthesized a series of memantine nitrate and some of them have shown vessel dilatory effects and neuroprotective effects; however, the detailed mechanisms have not been elucidated. In this study, we further demonstrated that memantine nitrate-06 (MN-06), one of the novel compounds derived from memantine, possessed significant neuroprotective effects against glutamate-induced excitotoxicity in rat primary cerebellar granule neurons (CGNs). Pretreatment of MN-06 reversed the activation of GSK3b and the suppression of phosphorylated Akt induced by glutamate. In addition, the neuroprotective effects of MN-06 could be abolished by LY294002, the specific phosphatidylinositol 3-kinase (PI3-K) inhibitor. Ca2+ imaging shown that pretreatment of MN-06 prevented Ca2+ influx induced by glutamate. Moreover, MN-06 might inhibit the NMDA-mediated current by antagonizing NDMA receptors, which was further confirmed by molecular docking simulation. Taken together, MN-06 protected against glutamate-induced excitotoxicity by blocking calcium influx and attenuating PI3-K/Akt/GSK-3b pathway, indicating that MN-06 might be a potential drug for treating neurodegenerative disorders.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Memantina/farmacologia , Neurônios/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Contagem de Células , Cerebelo/citologia , Hipocampo/citologia , Memantina/metabolismo , Simulação de Acoplamento Molecular , Neurônios/citologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
ACS Chem Neurosci ; 11(3): 314-327, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922720

RESUMO

We have previously designed and synthesized a series of novel memantine nitrates, and some of them have shown neuroprotective effects; however, the detailed mechanisms remain unknown. In this study, we demonstrated that MN-12, one of the memantine nitrates, concentration-dependently protected against glutamate-induced neurotoxicity in rat primary cultured cerebellar granule neurons (CGNs). Western blotting assays revealed that MN-12 might possess neuroprotective effects through the inhibition of ERK pathway and activation of PI3K/Akt pathway concurrently. Moreover, MN-12 concentration-dependently dilated precontracted rat middle cerebral artery through activation of NO-cGMP pathway ex vivo. In the 2-vessel occlusion (2VO) rat model, MN-12 alleviated the impairments of spatial memory and motor dysfunction possibly via neuroprotection and improvement of the cerebral blood flow. Furthermore, the results of preliminary pharmacokinetic studies showed that MN-12 might quickly distribute to the major organs including the brain, indicating that MN-12 could penetrate the blood-brain barrier. Taken together, MN-12 might provide multifunctional therapeutic benefits for dementia associated with Alzheimer's disease, vascular dementia, and ischemic stroke, via neuroprotection and vessel dilation to improve the cerebral blood flow.


Assuntos
Encéfalo/efeitos dos fármacos , Memantina/farmacologia , Neuroproteção/efeitos dos fármacos , Nitratos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Animais , Encéfalo/metabolismo , Demência Vascular/tratamento farmacológico , Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Memória Espacial/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
17.
Neuropharmacology ; 162: 107786, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726074

RESUMO

Delayed secondary degeneration in the non-ischemic sites such as ipsilateral thalamus would occur after cortical infarction. Hence, alleviating secondary damage is considered to be a promising novel target for acute stroke therapy. In the current study, the neuroprotective effects of bis(propyl)-cognitin (B3C), a multifunctional dimer, against secondary damage in the VPN of ipsilateral thalamus were investigated in a distal middle cerebral artery occlusion (dMCAO) stroke model in adult rats. It was found that B3C (0.5 and 1 mg/kg, ip) effectively improved neurological function of rats at day 7 and day 14 after dMCAO. Additionally, the treatment with B3C alleviated neuronal loss and gliosis in ipsilateral VPN after dMCAO, as evidenced by the higher immunoreactivity of neuron-specific nuclear-binding protein (NeuN) as well as lower immunostaining intensity of glial fibrillary acidic protein (GFAP) and cluster of differentiation 68 (CD68). Most encouragingly, immunohistochemistry and western blotting further revealed that B3C treatment greatly reduced Aß deposits and cathepsin B expression in the VPN of ipsilateral thalamus at day 7 and day 14 after dMCAO. In parallel, we demonstrated herein that the neuroprotective effects of B3C in dMCAO model were similar to L-3-trans-(Propyl-carbamoyloxirane-2-carbonyl)- L-isoleucyl-l-proline methyl ester (CA-074Me), a specific inhibitor of cathepsin B, suggesting that B3C attenuated secondary damage and Aß deposits in the VPN of ipsilateral thalamus after dMCAO possibly through the reduction of cathepsin B. These findings taken together provide novel molecular sights into the potential application of B3C for the treatment of secondary degeneration after cortical infarction.


Assuntos
Peptídeos beta-Amiloides/efeitos dos fármacos , Catepsina B/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/farmacologia , Infarto da Artéria Cerebral Média/metabolismo , Fármacos Neuroprotetores/farmacologia , Tacrina/análogos & derivados , Núcleos Ventrais do Tálamo/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos Nucleares/metabolismo , Catepsina B/antagonistas & inibidores , Catepsina B/metabolismo , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Infarto da Artéria Cerebral Média/patologia , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos , Tacrina/farmacologia , Tálamo/efeitos dos fármacos , Tálamo/metabolismo , Tálamo/patologia , Núcleos Ventrais do Tálamo/metabolismo , Núcleos Ventrais do Tálamo/patologia
18.
Bioorg Chem ; 92: 103232, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31526911

RESUMO

New potent mTORC1/mTORC2 dual inhibitors, 5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives, were obtained by optimizing functional groups on our previously reported PI3Kα inhibitor. All the target compounds were synthesized and structural optimization on the structure of the lead compound based on cytotoxic activity. The results showed that some of the target compounds exhibited moderate to high cytotoxic activity against cell line U87MG and PC-3. The activities against mTOR kinase were investigated and the compound 12q showed excellent activity with an IC50 value of 54 nM in the same level of the positive control BEZ235 with IC50 value of 55 nM under the same test conditions. The western blot and cell cycle results demonstrate that compound 12q is a candidate as an mTORC1/mTORC2 dual-target inhibitor. The theoretical calculations were also performed to better understanding the binding modes of the compound 12q in the mTOR active site.


Assuntos
Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Pirimidinas/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
19.
Biol Pharm Bull ; 42(6): 1013-1018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31155575

RESUMO

A novel series of 4-aryl-5,7-dihydro-6H-pyrrolo[2,3-d]pyrimidin-6-one derivatives were designed as a phosphoinositide 3-kinase α (PI3Kα) inhibitor by scaffold hopping. The target compounds, characterized by 1H-NMR, 13C-NMR and high resolution (HR)-MS, were synthesized from diethyl malonate and ethyl chloroacetate by nucleophilic substitution, ring-closure, chlorination and Suzuki reaction, etc. The biological activities were evaluated with cytotoxic activity in vitro on Uppsala 87 Malignant Glioma (U87MG) and prostate cancer-3 (PC-3) by Cell Counting Kit-8 (CCK-8). The results showed that compound 9c displayed the higher inhibition than the positive control PI-103, and high PI3Kα inhibitory activity with IC50 of 113 ± 9 nM in the same order of magnitude as BEZ235. In addition, the Log Kow values and molecular docking studies were performed to further investigate the drug-like properties of target compounds and interactions between 9c and PI3Kα.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinonas/química , Pirimidinonas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular
20.
Neurochem Int ; 128: 143-153, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034915

RESUMO

Combination therapies may have greater efficacy compared with monotherapy in treating stroke. We investigated the molecular mechanisms by which the combination of bis(propyl)-cognitin, an uncompetitive antagonist of NMDA receptor, and treadmill exercise promote rehabilitation after ischemic stroke. Rats were distributed into 3 treatment groups: infarct/bis(propyl)-cognitin(drug only group, DO); infarct/treadmill exercise(exercise only group, EO); infarct/bis(propyl)-cognitin + treadmill exercise (drug + exercise group, DE). The DE group had further separated to 3 sub-groups to investigate the effects achieved by different time for drug administration (60 min before stroke (DE-60 m), 15 min (DE+15 m) and 60 min (DE+60 m) after stroke). Although all infarct groups improved over time, the combination of bis(propyl)-cognitin and treadmill exercise effectively enhanced motor recovery during 14-day intervention. Early drug intervention has a best recovery result, the DE+15 m group with drug intervention at 15-min after stroke had better motor recovery than DE+60 m, DO, EO and control groups. Both bis(propyl)-cognitin and treadmill exercise significantly elevated brain VEGF expression and decreased brain infarct volume at 14 day post-ischemia. Our study reveals that bis(propyl)-cognitin potentiated rehabilitation of treadmill exercise after ischemic stroke, possibly via regulating brain VEGF expression, indicating that the combination of NMDA receptor antagonists and exercise might be useful for stroke rehabilitation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/reabilitação , Teste de Esforço/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/análogos & derivados , Fator A de Crescimento do Endotélio Vascular/biossíntese , Animais , Isquemia Encefálica/metabolismo , Teste de Esforço/métodos , Expressão Gênica , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Tacrina/farmacologia , Tacrina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...