Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Front Oncol ; 12: 1045016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439420

RESUMO

Total body irradiation (TBI) is a commonly used conditioning regimen for hematopoietic stem cell transplant (HCT), but dose heterogeneity and long-term organ toxicity pose significant challenges. Total marrow irradiation (TMI), an evolving radiation conditioning regimen for HCT can overcome the limitations of TBI by delivering the prescribed dose targeted to the bone marrow (BM) while sparing organs at risk. Recently, our group demonstrated that TMI up to 20 Gy in relapsed/refractory AML patients was feasible and efficacious, significantly improving 2-year overall survival compared to the standard treatment. Whether such dose escalation is feasible in elderly patients, and how the organ toxicity profile changes when switching to TMI in patients of all ages are critical questions that need to be addressed. We used our recently developed 3D image-guided preclinical TMI model and evaluated the radiation damage and its repair in key dose-limiting organs in young (~8 weeks) and old (~90 weeks) mice undergoing congenic bone marrow transplant (BMT). Engraftment was similar in both TMI and TBI-treated young and old mice. Dose escalation using TMI (12 to 16 Gy in two fractions) was well tolerated in mice of both age groups (90% survival ~12 Weeks post-BMT). In contrast, TBI at the higher dose of 16 Gy was particularly lethal in younger mice (0% survival ~2 weeks post-BMT) while old mice showed much more tolerance (75% survival ~13 weeks post-BMT) suggesting higher radio-resistance in aged organs. Histopathology confirmed worse acute and chronic organ damage in mice treated with TBI than TMI. As the damage was alleviated, the repair processes were augmented in the TMI-treated mice over TBI as measured by average villus height and a reduced ratio of relative mRNA levels of amphiregulin/epidermal growth factor (areg/egf). These findings suggest that organ sparing using TMI does not limit donor engraftment but significantly reduces normal tissue damage and preserves repair capacity with the potential for dose escalation in elderly patients.

2.
Front Oncol ; 12: 969429, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147914

RESUMO

Sickle cell disease (SCD) is a serious global health problem, and currently, the only curative option is hematopoietic stem cell transplant (HCT). However, myeloablative total body irradiation (TBI)-based HCT is associated with high mortality/morbidity in SCD patients. Therefore, reduced-intensity (2-4 Gy) total body radiation (TBI) is currently used as a conditioning regimen resulting in mixed chimerism with the rescue of the SCD disease characteristic features. However, donor chimerism gradually reduces in a few years, resulting in a relapse of the SCD features, and organ toxicities remained the primary concern for long-term survivors. Targeted marrow irradiation (TMI) is a novel technique developed to deliver radiation to the desired target while sparing vital organs and is successfully used for HCT in refractory/relapsed patients with leukemia. However, it is unknown if TMI will be an effective treatment for a hematological disorder like SCD without adverse effects seen on TBI. Therefore, we examined preclinical feasibility to determine the tolerated dose escalation, its impact on donor engraftment, and reduction in organ damage using our recently developed TMI in the humanized homozygous Berkley SCD mouse model (SS). We show that dose-escalated TMI (8:2) (8 Gy to the bone marrow and 2 Gy to the rest of the body) is tolerated with reduced organ pathology compared with TBI (4:4)-treated mice. Furthermore, with increased SCD control (AA) mice (25 million) donor BM cells, TMI (8:2)-treated mice show successful long-term engraftment while engraftment failed in TBI (2:2)-treated mice. We further evaluated the benefit of dose-escalated TMI and donor cell engraftment in alleviating SCD features. The donor engraftment in SCD mice completely rescues SCD disease features including recovery in RBCs, hematocrit, platelets, and reduced reticulocytes. Moreover, two-photon microscopy imaging of skull BM of transplanted SCD mice shows reduced vessel density and leakiness compared to untreated control SCD mice, indicating vascular recovery post-BMT.

3.
Front Oncol ; 12: 941814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924145

RESUMO

Total marrow irradiation (TMI) has significantly improved radiation conditioning for hematopoietic cell transplantation in hematologic diseases by reducing conditioning-induced toxicities and improving survival outcomes in relapsed/refractory patients. Recently, preclinical three-dimensional image-guided TMI has been developed to enhance mechanistic understanding of the role of TMI and to support the development of experimental therapeutics. However, a dosimetric comparison between preclinical and clinical TMI reveals that the preclinical TMI treatment lacks the ability to reduce the dose to some of the vital organs that are very close to the skeletal system and thus limits the ability to evaluate radiobiological relevance. To overcome this limit, we introduce a novel Sparse Orthogonal Collimator (SOC)-based TMI and evaluate its ability to enhance dosimetric conformality. The SOC-TMI-based dose modulation technique significantly improves TMI treatment planning by reducing radiation exposures to critical organs that are close to the skeletal system that leads to reducing the gap between clinical and preclinical TMI.

4.
Cancers (Basel) ; 14(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35267549

RESUMO

Engineered T cells expressing chimeric antigen receptors (CARs) on their cell surface can redirect antigen specificity. This ability makes CARs one of the most promising cancer therapeutic agents. CAR-T cells for treating patients with B cell hematological malignancies have shown impressive results. Clinical manifestation has yielded several trials, so far five CAR-T cell therapies have received US Food and Drug Administration (FDA) approval. However, emerging clinical data and recent findings have identified some immune-related toxicities due to CAR-T cell therapy. Given the outcome and utilization of the same proof of concept, further investigation in other hematological malignancies, such as leukemias, is warranted. This review discusses the previous findings from the pre-clinical and human experience with CAR-T cell therapy. Additionally, we describe recent developments of novel targets for adoptive immunotherapy. Here we present some of the early findings from the pre-clinical studies of CAR-T cell modification through advances in genetic engineering, gene editing, cellular programming, and formats of synthetic biology, along with the ongoing efforts to restore the function of exhausted CAR-T cells through epigenetic remodeling. We aim to shed light on the new targets focusing on acute myeloid leukemia (AML).

5.
Int J Radiat Oncol Biol Phys ; 112(4): 951-963, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767936

RESUMO

PURPOSE: Recent initial findings suggest that radiation therapy improves blood perfusion and cellular chemotherapy uptake in mice with leukemia. However, the ability of radiation therapy to influence drug accumulation in the extracellular bone marrow tissue is unknown, due in part to a lack of methodology. This study developed longitudinal quantitative multiphoton microscopy (L-QMPM) to characterize the bone marrow vasculature (BMV) and drug accumulation in the extracellular bone marrow tissue before and after radiation therapy in mice bearing leukemia. METHODS AND MATERIALS: We developed a longitudinal window implant for L-QMPM imaging of the calvarium BMV before, 2 days after, and 5 days after total body irradiation (TBI). Live time-lapsed images of a fluorescent drug surrogate were used to obtain measurements, including tissue wash-in slope (WIStissue) to measure extracellular drug accumulation. We performed L-QMPM imaging on healthy C57BL/6 (WT) mice, as well as mice bearing acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). RESULTS: Implants had no effects on calvarium dose, and parameters for wild-type untreated mice were stable during imaging. We observed decreased vessel diameter, vessel blood flow, and WIStissue with the onset of AML and ALL. Two to 10 Gy TBI increased WIStissue and vessel diameter 2 days after radiation therapy in all 3 groups of mice and increased single-vessel blood flow in mice bearing ALL and AML. Increased WIStissue was observed 5 days after 10 Gy TBI or 4 Gy split-dose TBI (2 treatments of 2 Gy spaced 3 days apart). CONCLUSIONS: L-QMPM provides stable functional assessments of the BMV. Nonmyeloablative and myeloablative TBI increases extracellular drug accumulation in the leukemic bone marrow 2 to 5 days posttreatment, likely through improved blood perfusion and drug exchange from the BMV to the extravascular tissue. Our data show that neo-adjuvant TBI at doses from 2 Gy to 10 Gy conditions the BMV to improve drug transport to the bone marrow.


Assuntos
Medula Óssea , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Medula Óssea/diagnóstico por imagem , Transplante de Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico por imagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Tomografia Computadorizada por Raios X , Microambiente Tumoral , Irradiação Corporal Total
6.
Biomed Opt Express ; 13(11): 6100-6112, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36733750

RESUMO

Image-guided small animal radiation research platforms allow more precise radiation treatment. Commercially available small animal X-ray irradiators are often equipped with a CT/cone-beam CT (CBCT) component for target guidance. Besides having poor soft-tissue contrast, CBCT unfortunately cannot provide molecular information due to its low sensitivity. Hence, there are extensive efforts to incorporate a molecular imaging component besides CBCT on these radiation therapy platforms. As an extension of these efforts, here we present a theranostic fluorescence tomography/CBCT-guided irradiator platform that provides both anatomical and molecular guidance, which can overcome the limitations of stand-alone CBCT. The performance of our hybrid system is validated using both tissue-like phantoms and mice ex vivo. Both studies show that fluorescence tomography can provide much more accurate quantitative results when CBCT-derived structural information is used to constrain the inverse problem. The error in the recovered fluorescence absorbance reduces nearly 10-fold for all cases, from approximately 60% down to 6%. This is very significant since high quantitative accuracy in molecular information is crucial to the correct assessment of the changes in tumor microenvironment related to radiation therapy.

7.
Int J Radiat Oncol Biol Phys ; 111(3): 671-683, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119592

RESUMO

PURPOSE: Total marrow irradiation (TMI) has significantly advanced radiation conditioning for hematopoietic cell transplantation in hematologic malignancies by reducing conditioning-induced toxicities and improving survival outcomes in relapsed/refractory patients. However, the relapse rate remains high, and the lack of a preclinical TMI model has hindered scientific advancements. To accelerate TMI translation to the clinic, we developed a TMI delivery system in preclinical models. METHODS AND MATERIALS: A Precision X-RAD SmART irradiator was used for TMI model development. Images acquired with whole-body contrast-enhanced computed tomography (CT) were used to reconstruct and delineate targets and vital organs for each mouse. Multiple beam and CT-guided Monte Carlo-based plans were performed to optimize doses to the targets and to vary doses to the vital organs. Long-term engraftment and reconstitution potential were evaluated by a congenic bone marrow transplantation (BMT) model and serial secondary BMT, respectively. Donor cell engraftment was measured using noninvasive bioluminescence imaging and flow cytometry. RESULTS: Multimodal imaging enabled identification of targets (skeleton and spleen) and vital organs (eg, lungs, gut, liver). In contrast to total body irradiation (TBI), TMI treatment allowed variation of radiation dose exposure to organs relative to the target dose. Dose reduction mirrored that in clinical TMI studies. Similar to TBI, mice treated with different TMI regimens showed full long-term donor engraftment in primary BMT and second serial BMT. The TBI-treated mice showed acute gut damage, which was minimized in mice treated with TMI. CONCLUSIONS: A novel multimodal image guided preclinical TMI model is reported here. TMI conditioning maintained long-term engraftment with reconstitution potential and reduced organ damage. Therefore, this TMI model provides a unique opportunity to study the therapeutic benefit of reduced organ damage and BM dose escalation to optimize treatment regimens in BMT and hematologic malignancies.


Assuntos
Transplante de Medula Óssea , Neoplasias Hematológicas , Animais , Medula Óssea/diagnóstico por imagem , Humanos , Camundongos , Recidiva Local de Neoplasia , Condicionamento Pré-Transplante , Irradiação Corporal Total
8.
Int J Radiat Oncol Biol Phys ; 109(1): 60-72, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32841681

RESUMO

PURPOSE: Although vascular alterations in solid tumor malignancies are known to decrease therapeutic delivery, the effects of leukemia-induced bone marrow vasculature (BMV) alterations on therapeutic delivery are not well known. Additionally, functional quantitative measurements of the leukemic BMV during chemotherapy and radiation therapy are limited, largely due to a lack of high-resolution imaging techniques available preclinically. This study develops a murine model using compartmental modeling for quantitative multiphoton microscopy (QMPM) to characterize the malignant BMV before and during treatment. METHODS AND MATERIALS: Using QMPM, live time-lapsed images of dextran leakage from the local BMV to the surrounding bone marrow of mice bearing acute lymphoblastic leukemia (ALL) were taken and fit to a 2-compartment model to measure the transfer rate (Ktrans), fractional extracellular extravascular space (νec), and vascular permeability parameters, as well as functional single-vessel characteristics. In response to leukemia-induced BMV alterations, the effects of 2 to 4 Gy low-dose radiation therapy (LDRT) on the BMV, drug delivery, and mouse survival were assessed post-treatment to determine whether neoadjuvant LDRT before chemotherapy improves treatment outcome. RESULTS: Mice bearing ALL had significantly altered Ktrans, increased νec, and increased permeability compared with healthy mice. Angiogenesis, decreased single-vessel perfusion, and decreased vessel diameter were observed. BMV alterations resulted in disease-dependent reductions in cellular uptake of Hoechst dye. LDRT to mice bearing ALL dilated BMV, increased single-vessel perfusion, and increased daunorubicin uptake by ALL cells. Consequently, LDRT administered to mice before receiving nilotinib significantly increased survival compared with mice receiving LDRT after nilotinib, demonstrating the importance of LDRT conditioning before therapeutic administration. CONCLUSION: The developed QMPM enables single-platform assessments of the pharmacokinetics of fluorescent agents and characterization of the BMV. Initial results suggest BMV alterations after neoadjuvant LDRT may contribute to enhanced drug delivery and increased treatment efficacy for ALL. The developed QMPM enables observations of the BMV for use in ALL treatment optimization.


Assuntos
Medula Óssea/irrigação sanguínea , Terapia Neoadjuvante , Neovascularização Patológica , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/radioterapia , Doses de Radiação , Animais , Linhagem Celular Tumoral , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Dosagem Radioterapêutica , Microambiente Tumoral/efeitos da radiação
9.
Materials (Basel) ; 13(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316977

RESUMO

We review the state-of-the-art in bone and marrow tissue engineering (BMTE) and hematological cancer tissue engineering (HCTE) in light of the recent interest in bone marrow environment and pathophysiology of hematological cancers. This review focuses on engineered BM tissue and organoids as in vitro models of hematological cancer therapeutics, along with identification of BM components and their integration as synthetically engineered BM mimetic scaffolds. In addition, the review details interaction dynamics of various BM and hematologic cancer (HC) cell types in co-culture systems of engineered BM tissues/phantoms as well as their relation to drug resistance and cytotoxicity. Interaction between hematological cancer cells and their niche, and the difference with respect to the healthy niche microenvironment narrated. Future perspectives of BMTE for in vitro disease models, BM regeneration and large scale ex vivo expansion of hematopoietic and mesenchymal stem cells for transplantation and therapy are explained. We conclude by overviewing the clinical application of biomaterials in BM and HC pathophysiology and its challenges and opportunities.

10.
IEEE Access ; 8: 93663-93670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32542176

RESUMO

Hypofractionated stereotactic body radiotherapy treatments (SBRT) have demonstrated impressive results for the treatment of a variety of solid tumors. The role of tumor supporting vasculature damage in treatment outcome for SBRT has been intensely debated and studied. Fast, non-invasive, longitudinal assessments of tumor vasculature would allow for thorough investigations of vascular changes correlated with SBRT treatment response. In this paper, we present a novel theranostic system which incorporates a fluorescence molecular imager into a commercial, preclinical, microCT-guided, irradiator and was designed to quantify tumor vascular response (TVR) to targeted radiotherapy. This system overcomes the limitations of single-timepoint imaging modalities by longitudinally assessing spatiotemporal differences in intravenously-injected ICG kinetics in tumors before and after high-dose radiation. Changes in ICG kinetics were rapidly quantified by principle component (PC) analysis before and two days after 10 Gy targeted tumor irradiation. A classifier algorithm based on PC data clustering identified pixels with TVR. Results show that two days after treatment, a significant delay in ICG clearance as measured by exponential decay (40.5±16.1% P=0.0405 Paired t-test n=4) was observed. Changes in the mean normalized first and second PC feature pixel values (PC1 & PC2) were found (P=0.0559, 0.0432 paired t-test), suggesting PC based analysis accurately detects changes in ICG kinetics. The PC based classification algorithm yielded spatially-resolved TVR maps. Our first-of-its-kind theranostic system, allowing automated assessment of TVR to SBRT, will be used to better understand the role of tumor perfusion in metastasis and local control.

11.
Clin Cancer Res ; 25(24): 7463-7474, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548348

RESUMO

PURPOSE: Acute myeloid leukemia (AML) is a highly aggressive form of leukemia, which results in poor survival outcomes. Currently, diagnosis and prognosis are based on invasive single-point bone marrow biopsies (iliac crest). There is currently no AML-specific noninvasive imaging method to detect disease, including in extramedullary organs, representing an unmet clinical need. About 85% to 90% of human myeloid leukemia cells express CD33 cell surface receptors, highlighting CD33 as an ideal candidate for AML immunoPET. EXPERIMENTAL DESIGN: We evaluated whether [64Cu]Cu-DOTA-anti-CD33 murine mAb can be used for immunoPET imaging of AML in a preclinical model. MicroCT was adjusted to detect spatial/anatomical details of PET activity. For translational purposes, a humanized anti-CD33 antibody was produced; we confirmed its ability to detect disease and its distribution. We reconfirmed/validated CD33 antibody-specific targeting with an antibody-drug conjugate (ADC) and radioimmunotherapy (RIT). RESULTS: [64Cu]Cu-DOTA-anti-CD33-based PET-CT imaging detected CD33+ AML in mice with high sensitivity (95.65%) and specificity (100%). The CD33+ PET activity was significantly higher in specific skeletal niches [femur (P < 0.00001), tibia (P = 0.0001), humerus (P = 0.0014), and lumber spine (P < 0.00001)] in AML-bearing mice (over nonleukemic control mice). Interestingly, the hybrid PET-CT imaging showed high disease activity in the epiphysis/metaphysis of the femur, indicating regional spatial heterogeneity. Anti-CD33 therapy using newly developed humanized anti-CD33 mAb as an ADC (P = 0.02) and [225Ac]Ac-anti-CD33-RIT (P < 0.00001) significantly reduced disease burden over that of respective controls. CONCLUSIONS: We have successfully developed a novel anti-CD33 immunoPET-CT-based noninvasive modality for AML and its spatial distribution, indicating a preferential skeletal niche.


Assuntos
Radioisótopos de Cobre/química , Compostos Heterocíclicos com 1 Anel/química , Imunoconjugados/farmacocinética , Leucemia Mieloide Aguda/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos/farmacocinética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Carcinog ; 58(1): 113-125, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30242889

RESUMO

Prostate cancer is one of the most commonly diagnosed cancers and a pressing health challenge in men worldwide. Radiation therapy (RT) is widely considered a standard therapy for advanced as well as localized prostate cancer. Although this primary therapy is associated with high cancer control rates, up to one-third of patients undergoing radiation therapy becomes radio-resistant and/or has tumor-relapse/recurrence. Therefore, focus on new molecular targets and pathways is essential to develop novel radio-sensitizing agents for the effective and safe treatment of prostate cancer. Here, we describe functional studies that were performed to investigate the role of structural maintenance of chromosome-1 (SMC1A) in radioresistance of metastatic prostate cancer cells. Short hairpin RNA (shRNA) was used to suppress SMC1A in metastatic castration-resistant prostate cancer cells, DU145 and PC3. Clonogenic survival assays, Western blot, RT-PCR, and γ-H2AX staining were used to assess the effect of SMC1A knockdown on radiation sensitivity of these prostate cancer cells. We demonstrate that SMC1A is overexpressed in human prostate tumors compared to the normal adjacent tissue. SMC1A knockdown limits the clonogenic potential, epithelial-mesenchymal transition (EMT), and cancer stem-like cell (CSC) properties of DU145 and PC3 cells and enhanced efficacy of RT in these cells. Targeted inhibition of SMC1A not only plays a critical role in overcoming radio-resistance in prostate cancer cells, but also suppresses self-renewal and the tumor-propagating potential of x-irradiated cancer cells. We propose that SMC1A could be a potential molecular target for the development of novel radio-sensitizing therapeutic agents for management of radio-resistant metastatic prostate cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Transição Epitelial-Mesenquimal , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Tolerância a Radiação , Apoptose , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Seguimentos , Raios gama , Humanos , Masculino , Metástase Neoplásica , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/radioterapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Células Tumorais Cultivadas
13.
Mol Imaging ; 16: 1536012117732203, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28948859

RESUMO

This report describes a multimodal whole-body 3'-deoxy-3'[(18)F]-fluorothymidine positron emission tomography (FLT-PET) and dual-energy computed tomography (DECT) method to identify leukemia distribution within the bone marrow environment (BME) and to develop disease- and/or BME-specific radiation strategies. A control participant and a newly diagnosed patient with acute myeloid leukemia prior to induction chemotherapy were scanned with FLT-PET and DECT. The red marrow (RM) and yellow marrow (YM) of the BME were segmented from DECT using a basis material decomposition method. Functional total marrow irradiation (fTMI) treatment planning simulations were performed combining FLT-PET and DECT imaging to differentially target irradiation to the leukemia niche and the rest of the skeleton. Leukemia colonized both RM and YM regions, adheres to the cortical bone in the spine, and has enhanced activity in the proximal/distal femur, suggesting a potential association of leukemia with the BME. The planning target volume was reduced significantly in fTMI compared with conventional TMI. The dose to active disease (standardized uptake value >4) was increased by 2-fold, while maintaining doses to critical organs similar to those in conventional TMI. In conclusion, a hybrid system of functional-anatomical-physiological imaging can identify the spatial distribution of leukemia and will be useful to both help understand the leukemia niche and develop targeted radiation strategies.


Assuntos
Medula Óssea/efeitos da radiação , Didesoxinucleosídeos/química , Leucemia/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Feminino , Humanos
14.
PLoS Comput Biol ; 13(7): e1005482, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683103

RESUMO

Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is characterized by a very poor prognosis and a high likelihood of acquired chemo-resistance. Although tyrosine kinase inhibitor (TKI) therapy has improved clinical outcome, most ALL patients relapse following treatment with TKI due to the development of resistance. We developed an in vitro model of Nilotinib-resistant Ph+ leukemia cells to investigate whether low dose radiation (LDR) in combination with TKI therapy overcome chemo-resistance. Additionally, we developed a mathematical model, parameterized by cell viability experiments under Nilotinib treatment and LDR, to explain the cellular response to combination therapy. The addition of LDR significantly reduced drug resistance both in vitro and in computational model. Decreased expression level of phosphorylated AKT suggests that the combination treatment plays an important role in overcoming resistance through the AKT pathway. Model-predicted cellular responses to the combined therapy provide good agreement with experimental results. Augmentation of LDR and Nilotinib therapy seems to be beneficial to control Ph+ leukemia resistance and the quantitative model can determine optimal dosing schedule to enhance the effectiveness of the combination therapy.


Assuntos
Quimiorradioterapia/métodos , Modelos Biológicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Simulação por Computador , Resistencia a Medicamentos Antineoplásicos/efeitos da radiação , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Resultado do Tratamento
15.
Phys Med ; 39: 33-38, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28711186

RESUMO

PURPOSE: To show the usefulness of topographic 2D megavoltage images (MV2D) for the localization of breast cancer patients treated with TomoDirect (TD), a radiotherapy treatment technique with fixed-angle beams performed on a TomoTherapy system. METHODS: A method was developed to quickly localize breast cancer patients treated with TD by registering the MV2D images produced before a TD treatment with reference images reconstructed from a kilovoltage CT simulation scanner and by using the projection of the beam-eye-view TD treatment field. Dose and image quality measurements were performed to determine the optimal parameters for acquiring MV2D images. A TD treatment was simulated on a chest phantom equipped with a breast attachment. MVCT and MV2D images were performed for 7 different shifted positions of the phantom and registered by 10 different operators with the simulation kilovoltage CT images. RESULTS: Compared to MVCT, MV2D imaging reduces the dose by a factor of up to 45 and the acquisition time by a factor of up to 49. Comparing the registration shift values obtained for the phantom images obtained with MVCT in the coarse mode to those obtained with MV2D, the mean difference is 1.0±1.1mm, -1.1mm±1.1, and -0.1±2.2mm, respectively, in the lateral, longitudinal, and vertical directions. CONCLUSIONS: With dual advantages (very fast imaging and a potentially reduced dose to the heart and contralateral organs), MV2D topographic images may be an attractive alternative to MVCT for the localization of breast cancer patients treated with TomoDirect.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador , Radioterapia Conformacional , Tomografia Computadorizada por Raios X , Neoplasias da Mama/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Tórax
16.
J Bone Miner Metab ; 35(4): 428-436, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27942979

RESUMO

Temporal and spatial variations in bone marrow adipose tissue (MAT) can be indicative of several pathologies and confound current methods of assessing immediate changes in bone mineral remodeling. We present a novel dual-energy computed tomography (DECT) method to monitor MAT and marrow-corrected volumetric BMD (mcvBMD) throughout the body. Twenty-three cancellous skeletal sites in 20 adult female cadavers aged 40-80 years old were measured using DECT (80 and 140 kVp). vBMD was simultaneous recorded using QCT. MAT was further sampled using MRI. Thirteen lumbar vertebrae were then excised from the MRI-imaged donors and examined by microCT. After MAT correction throughout the skeleton, significant differences (p < 0.05) were found between QCT-derived vBMD and DECT-derived mcvBMD results. McvBMD was highly heterogeneous with a maximum at the posterior skull and minimum in the proximal humerus (574 and 0.7 mg/cc, respectively). BV/TV and BMC have a nearly significant correlation with mcvBMD (r = 0.545, p = 0.057 and r = 0.539, p = 0.061, respectively). MAT assessed by DECT showed a significant correlation with MRI MAT results (r = 0.881, p < 0.0001). Both DECT- and MRI-derived MAT had a significant influence on uncorrected vBMD (r = -0.86 and r = -0.818, p ≤ 0.0001, respectively). Conversely, mcvBMD had no correlation with DECT- or MRI-derived MAT (r = 0.261 and r = 0.067). DECT can be used to assess MAT while simultaneously collecting mcvBMD values at each skeletal site. MAT is heterogeneous throughout the skeleton, highly variable, and should be accounted for in longitudinal mcvBMD studies. McvBMD accurately reflects the calcified tissue in cancellous bone.


Assuntos
Densidade Óssea/fisiologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/fisiologia , Tomografia Computadorizada por Raios X/métodos , Tecido Adiposo/diagnóstico por imagem , Adiposidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/diagnóstico por imagem , Cadáver , Feminino , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Microtomografia por Raio-X
17.
Int J Radiat Oncol Biol Phys ; 96(3): 679-87, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681765

RESUMO

PURPOSE: To develop an imaging method to characterize and map marrow composition in the entire skeletal system, and to simulate differential targeted marrow irradiation based on marrow composition. METHODS AND MATERIALS: Whole-body dual energy computed tomography (DECT) images of cadavers and leukemia patients were acquired, segmented to separate bone marrow components, namely, bone, red marrow (RM), and yellow marrow (YM). DECT-derived marrow fat fraction was validated using histology of lumbar vertebrae obtained from cadavers. The fractions of RM (RMF = RM/total marrow) and YMF were calculated in each skeletal region to assess the correlation of marrow composition with sites and ages. Treatment planning was simulated to target irradiation differentially at a higher dose (18 Gy) to either RM or YM and a lower dose (12 Gy) to the rest of the skeleton. RESULTS: A significant correlation between fat fractions obtained from DECT and cadaver histology samples was observed (r=0.861, P<.0001, Pearson). The RMF decreased in the head, neck, and chest was significantly inversely correlated with age but did not show any significant age-related changes in the abdomen and pelvis regions. Conformity of radiation to targets (RM, YM) was significantly dependent on skeletal sites. The radiation exposure was significantly reduced (P<.05, t test) to organs at risk (OARs) in RM and YM irradiation compared with standard total marrow irradiation (TMI). CONCLUSIONS: Whole-body DECT offers a new imaging technique to visualize and measure skeletal-wide marrow composition. The DECT-based treatment planning offers volumetric and site-specific precise radiation dosimetry of RM and YM, which varies with aging. Our proposed method could be used as a functional compartment of TMI for further targeted radiation to specific bone marrow environment, dose escalation, reduction of doses to OARs, or a combination of these factors.


Assuntos
Medula Óssea/diagnóstico por imagem , Medula Óssea/efeitos da radiação , Leucemia/diagnóstico por imagem , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Adulto , Medula Óssea/patologia , Cadáver , Relação Dose-Resposta à Radiação , Feminino , Humanos , Leucemia/patologia , Leucemia/terapia , Masculino , Pessoa de Meia-Idade , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Irradiação Corporal Total/métodos
18.
Int J Radiat Oncol Biol Phys ; 96(3): 688-95, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27681766

RESUMO

PURPOSE: Megavoltage computed tomographic (MVCT) imaging has been widely used for the 3-dimensional (3-D) setup of patients treated with helical tomotherapy (HT). One drawback of MVCT is its very long imaging time, the result of slow couch speeds of approximately 1 mm/s, which can be difficult for the patient to tolerate. We sought to develop an MVCT imaging method allowing faster couch speeds and to assess its accuracy for image guidance for HT. METHODS AND MATERIALS: Three cadavers were scanned 4 times with couch speeds of 1, 2, 3, and 4 mm/s. The resulting MVCT images were reconstructed using an iterative reconstruction (IR) algorithm with a penalty term of total variation and with a conventional filtered back projection (FBP) algorithm. The MVCT images were registered with kilovoltage CT images, and the registration errors from the 2 reconstruction algorithms were compared. This fast MVCT imaging was tested in 3 cases of total marrow irradiation as a clinical trial. RESULTS: The 3-D registration errors of the MVCT images reconstructed with the IR algorithm were smaller than the errors of images reconstructed with the FBP algorithm at fast couch speeds (2, 3, 4 mm/s). The scan time and imaging dose at a speed of 4 mm/s were reduced to 30% of those from a conventional coarse mode scan. For the patient imaging, faster MVCT (3 mm/s couch speed) scanning reduced the imaging time and still generated images useful for anatomic registration. CONCLUSIONS: Fast MVCT with the IR algorithm is clinically feasible for large 3-D target localization, which may reduce the overall time for the treatment procedure. This technique may also be useful for calculating daily dose distributions or organ motion analyses in HT treatment over a wide area. Automated integration of this imaging is at least needed to further assess its clinical benefits.


Assuntos
Medula Óssea/diagnóstico por imagem , Medula Óssea/efeitos da radiação , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Irradiação Corporal Total/métodos , Adulto , Medula Óssea/patologia , Cadáver , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Theor Biol Med Model ; 13: 6, 2016 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-26921069

RESUMO

BACKGROUND: Mathematical modeling of biological processes is widely used to enhance quantitative understanding of bio-medical phenomena. This quantitative knowledge can be applied in both clinical and experimental settings. Recently, many investigators began studying mathematical models of tumor response to radiation therapy. We developed a simple mathematical model to simulate the growth of tumor volume and its response to a single fraction of high dose irradiation. The modelling study may provide clinicians important insights on radiation therapy strategies through identification of biological factors significantly influencing the treatment effectiveness. METHODS: We made several key assumptions of the model. Tumor volume is composed of proliferating (or dividing) cancer cells and non-dividing (or dead) cells. Tumor growth rate (or tumor volume doubling time) is proportional to the ratio of the volumes of tumor vasculature and the tumor. The vascular volume grows slower than the tumor by introducing the vascular growth retardation factor, θ. Upon irradiation, the proliferating cells gradually die over a fixed time period after irradiation. Dead cells are cleared away with cell clearance time. The model was applied to simulate pre-treatment growth and post-treatment radiation response of rat rhabdomyosarcoma tumors and metastatic brain tumors of five patients who were treated with Gamma Knife stereotactic radiosurgery (GKSRS). RESULTS: By selecting appropriate model parameters, we showed the temporal variation of the tumors for both the rat experiment and the clinical GKSRS cases could be easily replicated by the simple model. Additionally, the application of our model to the GKSRS cases showed that the α-value, which is an indicator of radiation sensitivity in the LQ model, and the value of θ could be predictors of the post-treatment volume change. CONCLUSIONS: The proposed model was successful in representing both the animal experimental data and the clinically observed tumor volume changes. We showed that the model can be used to find the potential biological parameters, which may be able to predict the treatment outcome. However, there is a large statistical uncertainty of the result due to the small sample size. Therefore, a future clinical study with a larger number of patients is needed to confirm the finding.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Algoritmos , Animais , Neoplasias Encefálicas/radioterapia , Proliferação de Células , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Modelos Biológicos , Neoplasias/fisiopatologia , Probabilidade , Radiocirurgia , Dosagem Radioterapêutica , Ratos , Rabdomiossarcoma/radioterapia
20.
J Radiat Res ; 56(3): 485-92, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694476

RESUMO

Orthovoltage irradiators are routinely used to irradiate specimens and small animals in biological research. There are several reports on the characteristics of these units for small field irradiations. However, there is limited knowledge about use of these units for large fields, which are essential for emerging large-field irregular shape irradiations, namely total marrow irradiation used as a conditioning regimen for hematological malignancies. This work describes characterization of a self-contained Orthovoltage biological irradiator for large fields using measurements and Monte Carlo simulations that could be used to compute the dose for in vivo or in vitro studies for large-field irradiation using this or a similar unit. Percentage depth dose, profiles, scatter factors, and half-value layers were measured and analyzed. A Monte Carlo model of the unit was created and used to generate depth dose and profiles, as well as scatter factors. An ion chamber array was also used for profile measurements of flatness and symmetry. The output was determined according to AAPM Task Group 61 guidelines. The depth dose measurements compare well with published data for similar beams. The Monte Carlo-generated depth dose and profiles match our measured doses to within 2%. Scatter factor measurements indicate gradual variation of these factors with field size. Dose rate measured by placing the ion chamber atop the unit's steel plate or solid water indicate enhanced readings of 5 to 28% compared with those measured in air. The stability of output over a 5-year period is within 2% of the 5-year average.


Assuntos
Desenho Assistido por Computador , Modelos Estatísticos , Doses de Radiação , Radiobiologia/instrumentação , Irradiação Corporal Total/instrumentação , Irradiação Corporal Total/veterinária , Animais , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Radiometria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA