Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37368253

RESUMO

Tricalcium phosphate (TCP) is a food additive, labeled E341(iii), used in powdered food preparation, such as baby formula. In the United States, calcium phosphate nano-objects were identified in baby formula extractions. Our goal is to determine whether the TCP food additive, as is used in Europe, can be classified as a nanomaterial. The physicochemical properties of TCP were characterized. Three different samples (from a chemical company and two manufacturers) were thoroughly characterized according to the recommendations of the European Food Safety Authority. A commercial TCP food additive was identified as actually being hydroxyapatite (HA). It presents itself in the form of particles of different shapes (either needle-like, rod, or pseudo-spherical), which were demonstrated in this paper to be of a nanometric dimension: E341(iii) is thus a nanomaterial. In water, HA particles sediment rapidly as agglomerates or aggregates over a pH of 6 and are progressively dissolved in acidic media (pH < 5) until the complete dissolution at a pH of 2. Consequently, since TCP may be considered as a nanomaterial on the European market, it raises the question of its potential persistency in the gastrointestinal tract.

2.
Anal Chem ; 94(23): 8120-8125, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35648814

RESUMO

The development of instruments combining multiple characterization and imaging tools drove huge advances in material science, engineering, biology, and other related fields. Notably, the coupling of SEM with micro-Raman spectrometry (µRaman) provides the means for the correlation between structural and physicochemical properties at the surface, while dual focused ion beam (FIB)-scanning electron microscopes (SEMs) operating under cryogenic conditions (cryo-FIB-SEM) allow for the analysis of the ultrastructure of materials in situ and in their native environment. In cryo-FIB-SEM, rapid and efficient methods for assessing vitrification conditions in situ are required for the accurate investigation of the original structure of hydrated samples. This work reports for the first time the use of a cryo-FIB-SEM-µRaman instrument to efficiently assess the accuracy of cryo-fixation methods. Analyses were performed on plunge-freezed highly hydrated calcium phosphate cement (CPC) and a gelatin composite. By making a trench of a defined thickness with FIB, µRaman analyses were carried out at a specific depth within the frozen material. Results show that the µRaman signal is sensitive to the changes in the molecular structures of the aqueous phase and can be used to examine the depth of vitreous ice in frozen samples. The method presented in this work provides a reliable way to avoid imaging artifacts in cryo-FIB-SEM that are related to cryo-fixation and therefore constitutes great interest in the study of vitreous materials exhibiting high water content, regardless of the sample preparation method (i.e., by HPF, plunge freezing, and so on).


Assuntos
Criopreservação , Gelo , Microscopia Crioeletrônica/métodos , Congelamento , Água
3.
Dalton Trans ; 50(38): 13399-13406, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34473151

RESUMO

With the aim of identifying new cation-phenolate complexes, we herein investigated the reactivity of pyrogallol (H3pgal) with vanadium salts. A trimetallic anionic complex was identified, and found to be formed under a broad set of reaction conditions. This complex, with the formula V3O3(pgal)33-, consists of three oxovanadium(IV) units connected together by three pyrogallate ligands to afford a bowl-shaped species presenting a pseudo 3-fold symmetry axis. Its crystal structure is reported, as well as its characterisation by a broad set of techniques, including powder X-ray diffraction, thermogravimetric analysis, infrared and Raman spectroscopy, and solid state UV-visible diffuse reflectance. Its redox activity both in solution and in the solid state is described, together with its magnetic behavior. Finally, the relevance of this trimetallic unit in the field of phenolic-based biocoatings and Metal Organic Framework (MOF) synthesis is briefly discussed.

4.
Food Funct ; 12(13): 5975-5988, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34032251

RESUMO

Titanium dioxide is a food additive that has raised some concerns for humans due to the presence of nanoparticles. We were interested in knowing the fate of TiO2 particles in the gastro-intestinal tract and their potential effect on digestive enzymes. For this purpose, we analysed the behaviour of two different food grade TiO2 samples (E171) and one nano-sized TiO2 sample (P25) through a standardized static in vitro digestion protocol simulating the oral, gastric and intestinal phases with appropriate juices including enzymes. Both E171 and P25 TiO2 particles remained intact in the digestive fluids but formed large agglomerates, and especially in the intestinal fluid where up to 500 µm sized particles have been identified. The formation of these agglomerates is mediated by the adsorption of mainly α-amylase and divalent cations. Pepsin was also identified to adsorb onto TiO2 particles but only in the case of silica-covered E171. In the salivary conditions, TiO2 exerted an inhibitory action on the enzymatic activity of α-amylase. The activity was reduced by a factor dependent on enzyme concentrations (up to 34% at 1 mg mL-1) but this inhibitory effect was reduced to hardly 10% in the intestinal fluid. In the gastric phase, pepsin was not affected by any form of TiO2. Our results hint that food grade TiO2 has a limited impact on the global digestion of carbohydrates and proteins. However, the reduced activity specifically observed in the oral phase deserves deeper investigation to prevent any adverse health effects related to the slowdown of carbohydrate metabolism.


Assuntos
Digestão/efeitos dos fármacos , Alimentos , Nanopartículas/química , Titânio/farmacologia , Aditivos Alimentares/química , Fármacos Gastrointestinais , Humanos , Intestinos/efeitos dos fármacos , Nanopartículas Metálicas/química , Tamanho da Partícula
5.
ACS Nano ; 15(1): 596-603, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33444504

RESUMO

Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder. The curvature change near the edge cavities activates a D band, despite framework continuity. Theoretical calculations based on Placzek approximation fully corroborate this experimental finding. Usually used as a tool to quantify defect density in graphenic structures, the D band cannot be used as such in the presence of a graphene fold. This conclusion should serve as a basis to revisit materials comprising structural distortion where poor carbon organization was concluded on a Raman basis. Our finding also emphasizes the different visions of a defect between chemists and physicists, a possible source of confusion for researchers working in nanotechnologies.

6.
Nanoscale Adv ; 3(23): 6719-6727, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36132650

RESUMO

In line with the approach known as shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS), in which Raman signal amplification of analytes is provided by metallic nanoparticles with an ultrathin silica or alumina shell, we report here on a Surface-Enhanced Raman Spectroscopy (SERS) substrate consisting of periodic lines of Ag nanoparticles embedded in dielectric surfaces for enhancing Raman signals. This paper demonstrates the possibility to use these so-called 'PLANEDSERS' substrates as washable and reusable chemical sensors with a good level of repeatability. Large-area Ag nanoparticle arrays are produced by glancing-angle ion-beam sputtering deposition on nanorippled patterns and are protected from the chemical environment (atmospheric or liquid solutions) by a robust and functionalizable thin dielectric layer of alumina or silicon nitride. Our results show that linear assemblies of ellipsoidal nanoparticles (size ∼15 nm) separated by interparticle gaps of approximately 5 nm generate enough near-field intensity enhancement to give rise to significant SERS signals of non-Raman-resonant bipyridine molecules without chemical contact between molecules and Ag nanoparticles. Moreover, the optical dichroic response of these plasmonic assemblies allows for the possibility of tuning the excitation wavelength of the Raman spectra over a wide spectral range. This study is a first step towards designing a substrate-platform without chemical specificity to enhance in equal manner all the weak Raman signals of usual organic molecules and to avoid loss of balance in favour of only one species as usual in SERS experiments. The quantitative detection ranges for bipyridine used as a probe test molecule are around between 10-3 to 10-6 M.

7.
Phys Chem Chem Phys ; 22(41): 24051-24058, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33078785

RESUMO

In the frame of the development of solid ionogel electrolytes with enhanced ion transport properties, this paper investigates ionogel systems constituted by ∼80 wt% of ionic liquids (ILs) confined in meso-/macroporous silica monolith materials. The anion-cation coordination for two closely related ILs, either aprotic (AIL) butylmethylpyrrolidinium or protic (PIL) butylpyrrolidinium, both with bis(trifluoromethylsulfonyl)imide (TFSI) anions, with and without lithium cations, is studied in depth. The ILs are confined within silica with well-defined mesoporosities (8 to 16 nm). The effects of this confinement, onto melting points, onto conductivity followed by impedance spectroscopy, and onto lithium-TFSI coordination followed by Raman spectroscopy, are presented. Opposite effects have been observed on the melting temperature: it increased for the AIL (+2 °C) upon confinement, while it decreased for the PIL (-2 °C). With lithium, the confinement led to an increase of the melting temperature (+1 °C) for the PIL and AIL. Regarding ionic conductivities, a relative maximum was observed at 40 °C for a mesopore diameter of 10 nm for the AIL with 0.5 M lithium, while it was not clearly visible for the PIL. These differences are discussed in view of the charge balance at the interface between silanols and ILs: the presence of a PIL, contrary to an AIL, is expected to modify the acidity of the silica. Raman data showed that the coordination number of lithium by TFSI is reduced upon AIL confinement, although this was not observed for PILs. At last, this work highlights the impact of the acidity of a PIL on the chemistry occurring at the interface of the host network within ionogels.

8.
Nanoscale ; 12(23): 12602-12612, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32501469

RESUMO

Lamellar nanoporous gold thin films, constituted of a stack of very thin layers of porous gold, are synthesized by chemical etching from a stack of successively deposited nanolayers of copper and gold. The gold ligament size, the pore size and the distance between lamellas are tunable in the few tens nanometer range by controlling the initial thickness of the layers and the etching time. The SERS activity of these lamellar porous gold films is characterized by their SERS responses after adsorption of probe bipyridine and naphtalenethiol molecules. The SERS signal is investigated as a function of the bipyridine concentration from 10-14 mol L-1 to 10-3 mol L-1. The higher SERS response corresponds to an experimental detection limit down to 10-12 mol L-1. These performance is mainly attributed to the specific nanoporous gold architecture and the larger accessible surface to volume ratio. The lamellar nanoporous gold substrate is explored for sensitive SERS detection of dimethyl methylphosphonate (DMMP), a surrogate molecule of the highly toxic G-series nerve agents. The resultant nanostructure facilitates the diffusion of target molecules through the nanopores and their localization at the enhancing metallic surface leading to the unequivocal Raman signature of DMMP at a concentration of 5 parts per million.

9.
Appl Spectrosc ; 74(7): 780-790, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32452210

RESUMO

This work introduces hyper-resolution (HyRes), a numerical approach for spatial resolution enhancement that combines hyperspectral unmixing and super-resolution image restoration (SRIR). HyRes yields a substantial increase in spatial resolution of Raman spectroscopy while simultaneously preserving the undistorted spectral information. The resolving power of this technique is demonstrated on Raman spectroscopic data from a polymer nanowire sample. Here, we demonstrate an achieved resolution of better than 14 nm, a more than eightfold improvement on single-channel image-based SRIR and 25× better than regular far-field Raman spectroscopy, and comparable to near-field probing techniques.

10.
Nanomaterials (Basel) ; 10(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093023

RESUMO

Environmental degradation of transition metal disulfides (TMDs) is a key stumbling block in a range of applications. We show that a simple one-pot non-covalent pyrene coating process protects TMDs from both photoinduced oxidation and environmental aging. Pyrene is immobilized non-covalently on the basal plane of exfoliated MoS2 and WS2. The optical properties of TMD/pyrene are assessed via electronic absorption and fluorescence emission spectroscopy. High-resolution scanning transmission electron microscopy coupled with electron energy loss spectroscopy confirms extensive pyrene surface coverage, with density functional theory calculations suggesting a strongly bound stable parallel-stacked pyrene coverage of ~2-3 layers on the TMD surfaces. Raman spectroscopy of exfoliated TMDs while irradiating at 0.9 mW/4 µm2 under ambient conditions shows new and strong Raman bands due to oxidized states of Mo and W. Yet remarkably, under the same exposure conditions TMD/pyrene remain unperturbed. The current findings demonstrate that pyrene physisorbed on MoS2 and WS2 acts as an environmental barrier, preventing oxidative surface reactions in the TMDs catalyzed by moisture, air, and assisted by laser irradiation. Raman spectroscopy confirms that the hybrid materials stored under ambient conditions for two years remained structurally unaltered, corroborating the beneficial role of pyrene for not only hindering oxidation but also inhibiting aging.

11.
Phys Chem Chem Phys ; 22(4): 2193-2199, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912830

RESUMO

Plasmonic core-shell-isolated nanoparticles are promising nanoplatforms for photocatalysis and for low detection analysis. This paper describes the characterization of a 2,2'-bipyridine phosphonate functionalized Ag@TiO2 nanocomposite which complexes copper ions by enhanced Raman spectroscopy and X-ray absorption (XANES and EXAFS). We distinguished Cu(i) from Cu(ii) complexes using shell-isolated nanoparticle enhanced Raman (SHINERS) combined with XAS spectroscopy.

12.
Inorg Chem ; 58(24): 16322-16325, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31793288

RESUMO

This work highlights for the first time the photoluminescence (PL) properties of two new [Ln(Mo8O26)2]5- (Ln = Eu, Sm) lanthanide-containing polyoxometalates. Stable crystals of their tetrabutylammonium salts were synthesized, and their structures were confirmed by single-crystal X-ray diffraction. The robustness of the [Ln(Mo8O26)2]5- complexes in an acetonitrile solution has been evidenced by Fourier transform Raman and PL spectroscopies. The tetraphenylphosphonium derivatives were obtained by a salt metathesis reaction. The two series exhibit high thermal stability in air and are efficient phosphors at room temperature.

13.
Materials (Basel) ; 12(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035562

RESUMO

This paper explores the enhancement of Raman signals using individual nano-plasmonic structures and demonstrates the possibility to obtain controlled gold plasmonic nanostructures by atomic force microscopy (AFM) manipulation under a confocal Raman device. By manipulating the gold nanoparticles (Nps) while monitoring them using a confocal microscope, it is possible to generate individual nano- structures, plasmonic molecules not accessible currently by lithography at these nanometer scales. This flexible approach allows us to tune plasmonic resonance of the nanostructures, to generate localized hot spots and to circumvent the effects of strong electric near field gradients intrinsic to Tip Enhanced Raman Spectroscopy (TERS) or Surface Enhanced Raman Spectroscopy (SERS) experiments. The inter Np distances and symmetry of the plasmonic molecules in interaction with other individual nano-objects control the resonance conditions of the assemblies and the enhancement of their Raman responses. This paper shows also how some plasmonic structures generate localized nanometric areas with high electric field magnitude without strong gradient. These last plasmonic molecules may be used as "nano-lenses" tunable in wavelength and able to enhance Raman signals of neighbored nano-object. The positioning of one individual probed nano-object in the spatial area defined by the nano-lens becomes then very non-restrictive, contrary to TERS experiments where the spacing distance between tip and sample is crucial. The experimental flexibility obtained in these approaches is illustrated here by the enhanced Raman scatterings of carbon nanotube.

14.
Appl Spectrosc ; 73(8): 902-909, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30916988

RESUMO

Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical diffraction limit. Numerical post-processing with super-resolution algorithms provides a means to enhance resolution and can be straightforwardly applied. The aim of this work is to present interior point least squares (IPLS) as a powerful tool for super-resolution in Raman imaging through constrained optimization. IPLS's potential for super-resolution is illustrated on numerically generated test images. Its resolving power is demonstrated on Raman spectroscopic data of a polymer nanowire sample. Comparison to atomic force microscopy data of the same sample substantiates that the presented method is a promising technique for analyzing nanomaterial samples.

15.
Phys Chem Chem Phys ; 21(6): 3066-3072, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672929

RESUMO

This paper demonstrates the use of surface plasmon resonance of core-shell Ag@TiO2 particles in SHINERS experiments. A copper(ii) complex grafted onto Ag@TiO2 surface was probed by Raman spectroscopy using resonance excitation profiles vs. excitation wavelengths (514, 633 and 785 nm) to tune the Raman signals. Enhancement factors of the SHINERS assembly have been estimated and compared to the SERS effect of unmodified silver NPs colloidal dispersions. Finally, the grafting of the copper(ii) complex onto Ag@TiO2 was advantageously compared to the grafting onto Ag@SiO2 shell.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29052468

RESUMO

Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO2, the estimated intakes of TiO2 nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed. In this study, we focused our efforts on chewing gum, which is one of the food products contributing most to the intake of TiO2. The coatings of four kinds of chewing gum, where the presence of TiO2 was confirmed by Raman spectroscopy, were extracted in aqueous phases. The extracts were analysed by transmission electron microscopy (TEM), X-ray diffraction, Fourier Transform Raman spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish their chemical composition, crystallinity and size distribution. The coatings of the four chewing gums differ chemically from each other, and more specifically the amount of TiO2 varies from one coating to another. TiO2 particles constitute the entire coating of some chewing gums, whereas for others, TiO2 particles are embedded in an organic matrix and/or mixed with minerals like calcium carbonate, talc, or magnesium silicate. We found 1.1 ± 0.3 to 17.3 ± 0.9 mg TiO2 particles per piece of chewing gum, with a mean diameter of 135 ± 42 nm. TiO2 nanoparticles account for 19 ± 4% of all particles, which represents a mass fraction of 4.2 ± 0.1% on average. The intake of nanoparticles is thus highly dependent on the kind of chewing gum, with an estimated range extending from 0.04 ± 0.01 to 0.81 ± 0.04 mg of nano-TiO2 per piece of chewing gum. These data should serve to refine the exposure scenario.


Assuntos
Goma de Mascar/análise , Aditivos Alimentares/análise , Nanopartículas/análise , Titânio/análise , Espectrofotometria Atômica , Análise Espectral Raman
17.
Artigo em Inglês | MEDLINE | ID: mdl-28105903

RESUMO

Titanium dioxide (TiO2) is a transition metal oxide widely used as a white pigment in various applications, including food. Due to the classification of TiO2 nanoparticles by the International Agency for Research on Cancer as potentially harmful for humans by inhalation, the presence of nanoparticles in food products needed to be confirmed by a set of independent studies. Seven samples of food-grade TiO2 (E171) were extensively characterised for their size distribution, crystallinity and surface properties by the currently recommended methods. All investigated E171 samples contained a fraction of nanoparticles, however, below the threshold defining the labelling of nanomaterial. On the basis of these results and a statistical analysis, E171 food-grade TiO2 totally differs from the reference material P25, confirming the few published data on this kind of particle. Therefore, the reference material P25 does not appear to be the most suitable model to study the fate of food-grade TiO2 in the gastrointestinal tract. The criteria currently to obtain a representative food-grade sample of TiO2 are the following: (1) crystalline-phase anatase, (2) a powder with an isoelectric point very close to 4.1, (3) a fraction of nanoparticles comprised between 15% and 45%, and (4) a low specific surface area around 10 m2 g-1.


Assuntos
Aditivos Alimentares/química , Alimentos/normas , Nanopartículas/química , Titânio/análise , Aditivos Alimentares/normas , Humanos , Nanopartículas/normas , Tamanho da Partícula , Propriedades de Superfície , Titânio/normas
18.
J Mater Chem B ; 5(16): 2908-2920, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32263984

RESUMO

Drug delivery systems are proposed for the in situ controlled delivery of therapeutic molecules in the scope of tissue engineering. We propose herein silica nanofibers as carriers for the loading and release of bioactive proteins. The influence of pH, time and concentration on the amount of adsorbed proteins was studied. The interactions allowing loading were then studied by means of electron microscopy, zeta potential measurements, electron energy loss spectroscopy and attenuated total reflectance Fourier transform infrared analysis. Release profiles were determined and biological activities were enzymatically assessed. The first part of the work was carried out with lysozyme as a model protein, and then bioactive growth factors TGF-ß1 and GDF-5 were used because their significance in human adipose stromal cell differentiation towards intervertebral disc nucleopulpocytes was previously assessed. It is demonstrated that protein-silica nanofiber interactions are mainly driven by hydrogen bonds and local electrostatic interactions. The present data thus provide a better understanding of the adsorption phenomenon involved, as well as a method to control protein adsorption and release. It is worth pointing out that the kinetic release of growth factors, up to 28 days, and their biological activity maintenance seem to be compatible with intervertebral disc regenerative medicine.

19.
ACS Appl Mater Interfaces ; 7(3): 1932-42, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25561442

RESUMO

The fabrication of hybrid core-shell nanoassemblies involving a nondoped azo photochromic core coated with a dense shell of gold nanoparticles is reported to investigate the influence of localized plasmons onto the azo core photoisomerization. Photochromic organic nanoparticles, regarded as a novel class of high-density photoswitchable nanomaterials, are first elaborated upon precipitation in water of push-pull azo molecules, containing sulfur-terminated units to chelate gold nanoparticles. Photoisomerization studies of the azo nanoparticles reveal significantly higher E → Z photoconversion yields and Z → E thermal back relaxation rate constants compared to those of dyes processed as thin films and in solution, respectively. These unexpected results are ascribed to the large surface-to-volume ratio and cooperative effects encountered in nanoparticles that deform without disassembling under polarized illumination as a result of the weak change in the azo dipole moment. UV-vis spectroscopy and Raman microscopy of the hybrid nanoassemblies show strong optical coupling between both photoactive constituents, confirming that gold nanoparticles are tightly positioned on the azo core surface. Such coupling causes partial quenching of the azo photoisomerization but does not impact the thermal back relaxation. Longer sulfur-terminated chains provide reduced quenching of the photoreaction by the localized plasmons, thereby opening perspectives toward plasmon-mediated deformation of nano-objects for light-controlled nanomechanics.

20.
Nat Commun ; 5: 5842, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25519052

RESUMO

Linear electronic band dispersion and the associated Dirac physics has to date been limited to special-case materials, notably graphene and the surfaces of three-dimensional (3D) topological insulators. Here we report that it is possible to create two-dimensional fully conjugated polymer networks with corresponding conical valence and conduction bands and linear energy dispersion at the Fermi level. This is possible for a wide range of polymer types and connectors, resulting in a versatile new family of experimentally realisable materials with unique tuneable electronic properties. We demonstrate their stability on substrates and possibilities for doping and Dirac cone distortion. Notably, the cones can be maintained in 3D-layered crystals. Resembling covalent organic frameworks, these materials represent a potentially exciting new field combining the unique Dirac physics of graphene with the structural flexibility and design opportunities of organic-conjugated polymer chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...