Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(4): e9903, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038528

RESUMO

Animal abundance estimation is increasingly based on drone or aerial survey photography. Manual postprocessing has been used extensively; however, volumes of such data are increasing, necessitating some level of automation, either for complete counting, or as a labour-saving tool. Any automated processing can be challenging when using such tools on species that nest in close formation such as Pygoscelis penguins. We present here a customized CNN-based density map estimation method for counting of penguins from low-resolution aerial photography. Our model, an indirect regression algorithm, performed significantly better in terms of counting accuracy than standard detection algorithm (Faster-RCNN) when counting small objects from low-resolution images and gave an error rate of only 0.8 percent. Density map estimation methods as demonstrated here can vastly improve our ability to count animals in tight aggregations and demonstrably improve monitoring efforts from aerial imagery.

2.
Biodivers Data J ; 11: e101476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327356

RESUMO

Background: The Antarctic Penguin Biogeography Project is an effort to collate all known information about the distribution and abundance of Antarctic penguins through time and to make such data available to the scientific and management community. The core data product involves a series of structured tables with information on known breeding sites and surveys conducted at those sites from the earliest days of Antarctic exploration through to the present. This database, which is continuously updated as new information becomes available, provides a unified and comprehensive repository of information on Antarctic penguin biogeography that contributes to a growing suite of applications of value to the Antarctic community. One such application is the Mapping Application for Antarctic Penguins and Projected Dynamics (MAPPPD; www.penguinmap.com), a browser-based search and visualisation tool designed primarily for policy-makers and other non-specialists, and mapppdr, an R package developed to assist the Antarctic science community. This dataset contains records of Pygoscelisadeliae, Pygoscelisantarctica, Pygoscelispapua, Eudypteschrysolophus, Aptenodytespatagonicus and Aptenodytesforsteri annual nest, adult and/or chick counts conducted during field expeditions or collected using remote sensing imagery, that were subsequently gathered by the Antarctic Penguin Biogeography Project from published and unpublished sources, at all known Antarctic penguin breeding colonies south of 60 S from 01-11-1892 to 12-02-2022-02-12. New information: This dataset collates together all publicly available breeding colony abundance data (1979-2022) for Antarctic penguins in a single database with standardised notation and format. Colony locations have been adjusted as necessary using satellite imagery and each colony has been assigned a unique four-digit alphanumeric code to avoid confusion. These data include information previously published in a variety of print and online formats as well as additional survey data not previously published. Previously unpublished data derive primarily from recent surveys collected under the auspices of the Antarctic Site Inventory, Penguin Watch or by the Lynch Lab at Stony Brook University.

3.
Sensors (Basel) ; 21(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535463

RESUMO

The emergence of very high-resolution (VHR) satellite imagery (less than 1 m spatial resolution) is creating new opportunities within the fields of ecology and conservation biology. The advancement of sub-meter resolution imagery has provided greater confidence in the detection and identification of features on the ground, broadening the realm of possible research questions. To date, VHR imagery studies have largely focused on terrestrial environments; however, there has been incremental progress in the last two decades for using this technology to detect cetaceans. With advances in computational power and sensor resolution, the feasibility of broad-scale VHR ocean surveys using VHR satellite imagery with automated detection and classification processes has increased. Initial attempts at automated surveys are showing promising results, but further development is necessary to ensure reliability. Here we discuss the future directions in which VHR satellite imagery might be used to address urgent questions in whale conservation. We highlight the current challenges to automated detection and to extending the use of this technology to all oceans and various whale species. To achieve basin-scale marine surveys, currently not feasible with any traditional surveying methods (including boat-based and aerial surveys), future research requires a collaborative effort between biology, computation science, and engineering to overcome the present challenges to this platform's use.


Assuntos
Imagens de Satélites , Baleias , Animais , Reprodutibilidade dos Testes
4.
PLoS One ; 14(10): e0212532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574136

RESUMO

Most cetacean species are wide-ranging and highly mobile, creating significant challenges for researchers by limiting the scope of data that can be collected and leaving large areas un-surveyed. Aerial surveys have proven an effective way to locate and study cetacean movements but are costly and limited in spatial extent. Here we present a semi-automated pipeline for whale detection from very high-resolution (sub-meter) satellite imagery that makes use of a convolutional neural network (CNN). We trained ResNet, and DenseNet CNNs using down-scaled aerial imagery and tested each model on 31 cm-resolution imagery obtained from the WorldView-3 sensor. Satellite imagery was tiled and the trained algorithms were used to classify whether or not a tile was likely to contain a whale. Our best model correctly classified 100% of tiles with whales, and 94% of tiles containing only water. All model architectures performed well, with learning rate controlling performance more than architecture. While the resolution of commercially-available satellite imagery continues to make whale identification a challenging problem, our approach provides the means to efficiently eliminate areas without whales and, in doing so, greatly accelerates ocean surveys for large cetaceans.


Assuntos
Cetáceos/fisiologia , Aprendizado Profundo , Imagens de Satélites , Animais
5.
Nat Commun ; 8(1): 832, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018199

RESUMO

Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.


Assuntos
Modelos Teóricos , Spheniscidae , Animais , Regiões Antárticas , Teorema de Bayes , Humanos , Dinâmica Populacional , Grupos Populacionais , Processos Estocásticos
6.
Science ; 352(6292): 1404-5, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27313032
7.
PLoS One ; 10(9): e0137241, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26331957

RESUMO

Advances in GPS tracking technologies have allowed for rapid assessment of important oceanographic regions for seabirds. This allows us to understand seabird distributions, and the characteristics which determine the success of populations. In many cases, quality GPS tracking data may not be available; however, long term population monitoring data may exist. In this study, a method to infer important oceanographic regions for seabirds will be presented using breeding sooty shearwaters as a case study. This method combines a popular machine learning algorithm (generalized boosted regression modeling), geographic information systems, long-term ecological data and open access oceanographic datasets. Time series of chick size and harvest index data derived from a long term dataset of Maori 'muttonbirder' diaries were obtained and used as response variables in a gridded spatial model. It was found that areas of the sub-Antarctic water region best capture the variation in the chick size data. Oceanographic features including wind speed and charnock (a derived variable representing ocean surface roughness) came out as top predictor variables in these models. Previously collected GPS data demonstrates that these regions are used as "flyways" by sooty shearwaters during the breeding season. It is therefore likely that wind speeds in these flyways affect the ability of sooty shearwaters to provision for their chicks due to changes in flight dynamics. This approach was designed to utilize machine learning methodology but can also be implemented with other statistical algorithms. Furthermore, these methods can be applied to any long term time series of population data to identify important regions for a species of interest.


Assuntos
Aves , Oceanografia , Algoritmos , Animais , Sistemas de Informação Geográfica , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...