Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38772903

RESUMO

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade increasing evidence from preclinical models suggests that cells, which are not normally resident in the lung can be utilized to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathologic remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "-omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.

2.
Nat Microbiol ; 9(5): 1293-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38622380

RESUMO

Children infected with SARS-CoV-2 rarely progress to respiratory failure. However, the risk of mortality in infected people over 85 years of age remains high. Here we investigate differences in the cellular landscape and function of paediatric (<12 years), adult (30-50 years) and older adult (>70 years) ex vivo cultured nasal epithelial cells in response to infection with SARS-CoV-2. We show that cell tropism of SARS-CoV-2, and expression of ACE2 and TMPRSS2 in nasal epithelial cell subtypes, differ between age groups. While ciliated cells are viral replication centres across all age groups, a distinct goblet inflammatory subtype emerges in infected paediatric cultures and shows high expression of interferon-stimulated genes and incomplete viral replication. In contrast, older adult cultures infected with SARS-CoV-2 show a proportional increase in basaloid-like cells, which facilitate viral spread and are associated with altered epithelial repair pathways. We confirm age-specific induction of these cell types by integrating data from in vivo COVID-19 studies and validate that our in vitro model recapitulates early epithelial responses to SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Células Epiteliais , Mucosa Nasal , SARS-CoV-2 , Serina Endopeptidases , Humanos , COVID-19/virologia , SARS-CoV-2/fisiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Adulto , Pessoa de Meia-Idade , Idoso , Células Epiteliais/virologia , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Mucosa Nasal/virologia , Criança , Fatores Etários , Replicação Viral , Pré-Escolar , Tropismo Viral , Masculino , Feminino , Idoso de 80 Anos ou mais , Células Cultivadas , Adolescente , Lactente
3.
Mol Ther ; 32(5): 1497-1509, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429928

RESUMO

The hallmark of epidermolysis bullosa (EB) is fragile attachment of epithelia due to genetic variants in cell adhesion genes. We describe 16 EB patients treated in the ear, nose, and throat department of a tertiary pediatric hospital linked to the United Kingdom's national EB unit between 1992 and 2023. Patients suffered a high degree of morbidity and mortality from laryngotracheal stenosis. Variants in laminin subunit alpha-3 (LAMA3) were found in 10/15 patients where genotype was available. LAMA3 encodes a subunit of the laminin-332 heterotrimeric extracellular matrix protein complex and is expressed by airway epithelial basal stem cells. We investigated the benefit of restoring wild-type LAMA3 expression in primary EB patient-derived basal cell cultures. EB basal cells demonstrated weak adhesion to cell culture substrates, but could otherwise be expanded similarly to non-EB basal cells. In vitro lentiviral overexpression of LAMA3A in EB basal cells enabled them to differentiate in air-liquid interface cultures, producing cilia with normal ciliary beat frequency. Moreover, transduction restored cell adhesion to levels comparable to a non-EB donor culture. These data provide proof of concept for a combined cell and gene therapy approach to treat airway disease in LAMA3-affected EB.


Assuntos
Adesão Celular , Epidermólise Bolhosa , Laminina , Lentivirus , Humanos , Laminina/metabolismo , Laminina/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa/metabolismo , Epidermólise Bolhosa/terapia , Epidermólise Bolhosa/patologia , Criança , Lentivirus/genética , Masculino , Feminino , Pré-Escolar , Terapia Genética/métodos , Vetores Genéticos/genética , Células Epiteliais/metabolismo , Células Cultivadas , Expressão Gênica , Adolescente , Lactente
4.
Mucosal Immunol ; 17(1): 124-136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38007005

RESUMO

SARS-CoV-2 initially infects cells in the nasopharynx and oral cavity. The immune system at these mucosal sites plays a crucial role in minimizing viral transmission and infection. To develop new strategies for preventing SARS-CoV-2 infection, this study aimed to identify proteins that protect against viral infection in saliva. We collected 551 saliva samples from 290 healthcare workers who had tested positive for COVID-19, before vaccination, between June and December 2020. The samples were categorized based on their ability to block or enhance infection using in vitro assays. Mass spectrometry and enzyme-linked immunosorbent assay experiments were used to identify and measure the abundance of proteins that specifically bind to SARS-CoV-2 antigens. Immunoglobulin (Ig)A specific to SARS-CoV-2 antigens was detectable in over 83% of the convalescent saliva samples. We found that concentrations of anti-receptor-binding domain IgA >500 pg/µg total protein in saliva correlate with reduced viral infectivity in vitro. However, there is a dissociation between the salivary IgA response to SARS-CoV-2, and systemic IgG titers in convalescent COVID-19 patients. Then, using an innovative technique known as spike-baited mass spectrometry, we identified novel spike-binding proteins in saliva, most notably vimentin, which correlated with increased viral infectivity in vitro and could serve as a therapeutic target against COVID-19.


Assuntos
COVID-19 , Humanos , Anticorpos Antivirais , Antígenos Virais , Imunoglobulina A , SARS-CoV-2 , Vimentina
5.
Sci Immunol ; 8(90): eadf9988, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100545

RESUMO

Studies of human lung development have focused on epithelial and mesenchymal cell types and function, but much less is known about the developing lung immune cells, even though the airways are a major site of mucosal immunity after birth. An unanswered question is whether tissue-resident immune cells play a role in shaping the tissue as it develops in utero. Here, we profiled human embryonic and fetal lung immune cells using scRNA-seq, smFISH, and immunohistochemistry. At the embryonic stage, we observed an early wave of innate immune cells, including innate lymphoid cells, natural killer cells, myeloid cells, and lineage progenitors. By the canalicular stage, we detected naive T lymphocytes expressing high levels of cytotoxicity genes and the presence of mature B lymphocytes, including B-1 cells. Our analysis suggests that fetal lungs provide a niche for full B cell maturation. Given the presence and diversity of immune cells during development, we also investigated their possible effect on epithelial maturation. We found that IL-1ß drives epithelial progenitor exit from self-renewal and differentiation to basal cells in vitro. In vivo, IL-1ß-producing myeloid cells were found throughout the lung and adjacent to epithelial tips, suggesting that immune cells may direct human lung epithelial development.


Assuntos
Imunidade Inata , Pulmão , Humanos , Diferenciação Celular , Células Matadoras Naturais , Células Epiteliais
6.
Biomaterials ; 301: 122203, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515903

RESUMO

Lung infections are one of the leading causes of death worldwide, and this situation has been exacerbated by the emergence of COVID-19. Pre-clinical modelling of viral infections has relied on cell cultures that lack 3D structure and the context of lung extracellular matrices. Here, we propose a bioreactor-based, whole-organ lung model of viral infection. The bioreactor takes advantage of an automated system to achieve efficient decellularization of a whole rat lung, and recellularization of the scaffold using primary human bronchial cells. Automatization allowed for the dynamic culture of airway epithelial cells in a breathing-mimicking setup that led to an even distribution of lung epithelial cells throughout the distal regions. In the sealed bioreactor system, we demonstrate proof-of-concept for viral infection within the epithelialized lung by infecting primary human airway epithelial cells and subsequently injecting neutrophils. Moreover, to assess the possibility of drug screening in this model, we demonstrate the efficacy of the broad-spectrum antiviral remdesivir. This whole-organ scale lung infection model represents a step towards modelling viral infection of human cells in a 3D context, providing a powerful tool to investigate the mechanisms of the early stages of pathogenic infections and the development of effective treatment strategies for respiratory diseases.


Assuntos
COVID-19 , Pneumonia , Viroses , Ratos , Humanos , Animais , Pulmão , Células Epiteliais , Alicerces Teciduais/química
7.
Front Oncol ; 13: 1156743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342197

RESUMO

Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines.

8.
bioRxiv ; 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38168428

RESUMO

Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the >200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway.

9.
iScience ; 25(11): 105409, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388965

RESUMO

The airway epithelium is a protective barrier that is maintained by the self-renewal and differentiation of basal stem cells. Increasing age is a principle risk factor for chronic lung diseases, but few studies have explored age-related molecular or functional changes in the airway epithelium. We retrieved epithelial biopsies from histologically normal tracheobronchial sites from pediatric and adult donors and compared their cellular composition and gene expression profile (in laser capture-microdissected whole epithelium, fluorescence-activated cell-sorted basal cells, and basal cells in cell culture). Histologically, pediatric and adult tracheobronchial epithelium was similar in composition. We observed age-associated changes in RNA sequencing studies, including higher interferon-associated gene expression in pediatric epithelium. In cell culture, pediatric cells had higher colony formation ability, sustained in vitro growth, and outcompeted adult cells in a direct competitive proliferation assay. Our results demonstrate cell-intrinsic differences between airway epithelial cells from children and adults in both homeostatic and proliferative states.

10.
Biol Open ; 11(10)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36239242

RESUMO

Acute and chronic lung diseases are a leading cause of morbidity and mortality globally. Unfortunately, these diseases are increasing in frequency and we have limited treatment options for severe lung diseases. New therapies are needed that not only treat symptoms or slow disease progression, but also enable the regeneration of functional lung tissue. Both airways and alveoli contain populations of epithelial stem cells with the potential to self-renew and produce differentiated progeny. Understanding the mechanisms that determine the behaviour of these cells, and their interactions with their niches, will allow future generations of respiratory therapies that protect the lungs from disease onset, promote regeneration from endogenous stem cells or enable regeneration through the delivery of exogenous cells. This review summarises progress towards each of these goals, highlighting the challenges and opportunities of developing pro-regenerative (bio)pharmaceutical, gene and cell therapies for respiratory diseases.


Assuntos
Pneumopatias , Transplante de Células-Tronco , Humanos , Pulmão , Pneumopatias/etiologia , Pneumopatias/terapia , Preparações Farmacêuticas
11.
J Cell Sci ; 135(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35929456

RESUMO

Chromosomal instability (CIN), the process of increased chromosomal alterations, compromises genomic integrity and has profound consequences on human health. Yet, our understanding of the molecular and mechanistic basis of CIN initiation remains limited. We developed a high-throughput, single-cell, image-based pipeline employing deep-learning and spot-counting models to detect CIN by automatically counting chromosomes and micronuclei. To identify CIN-initiating conditions, we used CRISPR activation in human diploid cells to upregulate, at physiologically relevant levels, 14 genes that are functionally important in cancer. We found that upregulation of CCND1, FOXA1 and NEK2 resulted in pronounced changes in chromosome counts, and KIF11 upregulation resulted in micronuclei formation. We identified KIF11-dependent fragilities within the mitotic spindle; increased levels of KIF11 caused centrosome fragmentation, higher microtubule stability, lagging chromosomes or mitotic catastrophe. Our findings demonstrate that even modest changes in the average expression of single genes in a karyotypically stable background are sufficient for initiating CIN by exposing fragilities of the mitotic spindle, which can lead to a genomically diverse cell population.


Assuntos
Instabilidade Cromossômica , Cinesinas , Fuso Acromático , Aneuploidia , Centrossomo/metabolismo , Instabilidade Cromossômica/genética , Aberrações Cromossômicas , Humanos , Cinesinas/genética , Microtúbulos/genética , Mitose/genética , Quinases Relacionadas a NIMA/metabolismo , Fuso Acromático/genética , Fuso Acromático/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L341-L354, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762622

RESUMO

The 9th biennial conference titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" was hosted virtually, due to the ongoing COVID-19 pandemic, in collaboration with the University of Vermont Larner College of Medicine, the National Heart, Lung, and Blood Institute, the Alpha-1 Foundation, the Cystic Fibrosis Foundation, and the International Society for Cell & Gene Therapy. The event was held from July 12th through 15th, 2021 with a pre-conference workshop held on July 9th. As in previous years, the objectives remained to review and discuss the status of active research areas involving stem cells (SCs), cellular therapeutics, and bioengineering as they relate to the human lung. Topics included 1) technological advancements in the in situ analysis of lung tissues, 2) new insights into stem cell signaling and plasticity in lung remodeling and regeneration, 3) the impact of extracellular matrix in stem cell regulation and airway engineering in lung regeneration, 4) differentiating and delivering stem cell therapeutics to the lung, 5) regeneration in response to viral infection, and 6) ethical development of cell-based treatments for lung diseases. This selection of topics represents some of the most dynamic and current research areas in lung biology. The virtual workshop included active discussion on state-of-the-art methods relating to the core features of the 2021 conference, including in situ proteomics, lung-on-chip, induced pluripotent stem cell (iPSC)-airway differentiation, and light sheet microscopy. The conference concluded with an open discussion to suggest funding priorities and recommendations for future research directions in basic and translational lung biology.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Bioengenharia , Biologia , COVID-19/terapia , Humanos , Pulmão , Pandemias
13.
Simul Healthc ; 17(1): 66-67, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33993138

RESUMO

SUMMARY STATEMENT: Simulation resources offer an opportunity to highlight aerosol dispersion within the operating room environment. We demonstrate our methodology with a supporting video that can offer operating room teams support in their practical understanding of aerosol exposure and the importance of personal protective equipment.


Assuntos
Salas Cirúrgicas , Equipamento de Proteção Individual , Aerossóis , Pessoal de Saúde , Humanos
14.
Front Pharmacol ; 13: 1083017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712670

RESUMO

Organoids have become a prominent model system in pulmonary research. The ability to establish organoid cultures directly from patient tissue has expanded the repertoire of physiologically relevant preclinical model systems. In addition to their derivation from adult lung stem/progenitor cells, lung organoids can be derived from fetal tissue or induced pluripotent stem cells to fill a critical gap in modelling pulmonary development in vitro. Recent years have seen important progress in the characterisation and refinement of organoid culture systems. Here, we address several open questions in the field, including how closely organoids recapitulate the tissue of origin, how well organoids recapitulate patient cohorts, and how well organoids capture diversity within a patient. We advocate deeper characterisation of models using single cell technologies, generation of more diverse organoid biobanks and further standardisation of culture media.

15.
Cancer Discov ; 11(10): 2456-2473, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33947663

RESUMO

APOBEC3 enzymes are cytosine deaminases implicated in cancer. Precisely when APOBEC3 expression is induced during cancer development remains to be defined. Here we show that specific APOBEC3 genes are upregulated in breast ductal carcinoma in situ, and in preinvasive lung cancer lesions coincident with cellular proliferation. We observe evidence of APOBEC3-mediated subclonal mutagenesis propagated from TRACERx preinvasive to invasive non-small cell lung cancer (NSCLC) lesions. We find that APOBEC3B exacerbates DNA replication stress and chromosomal instability through incomplete replication of genomic DNA, manifested by accumulation of mitotic ultrafine bridges and 53BP1 nuclear bodies in the G1 phase of the cell cycle. Analysis of TRACERx NSCLC clinical samples and mouse lung cancer models revealed APOBEC3B expression driving replication stress and chromosome missegregation. We propose that APOBEC3 is functionally implicated in the onset of chromosomal instability and somatic mutational heterogeneity in preinvasive disease, providing fuel for selection early in cancer evolution. SIGNIFICANCE: This study reveals the dynamics and drivers of APOBEC3 gene expression in preinvasive disease and the exacerbation of cellular diversity by APOBEC3B through DNA replication stress to promote chromosomal instability early in cancer evolution.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Desaminases APOBEC/genética , Neoplasias da Mama/genética , Carcinoma Ductal/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Instabilidade Cromossômica , Replicação do DNA , Feminino , Humanos , Camundongos
16.
Nature ; 592(7856): 799-803, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854232

RESUMO

Mammalian development, adult tissue homeostasis and the avoidance of severe diseases including cancer require a properly orchestrated cell cycle, as well as error-free genome maintenance. The key cell-fate decision to replicate the genome is controlled by two major signalling pathways that act in parallel-the MYC pathway and the cyclin D-cyclin-dependent kinase (CDK)-retinoblastoma protein (RB) pathway1,2. Both MYC and the cyclin D-CDK-RB axis are commonly deregulated in cancer, and this is associated with increased genomic instability. The autophagic tumour-suppressor protein AMBRA1 has been linked to the control of cell proliferation, but the underlying molecular mechanisms remain poorly understood. Here we show that AMBRA1 is an upstream master regulator of the transition from G1 to S phase and thereby prevents replication stress. Using a combination of cell and molecular approaches and in vivo models, we reveal that AMBRA1 regulates the abundance of D-type cyclins by mediating their degradation. Furthermore, by controlling the transition from G1 to S phase, AMBRA1 helps to maintain genomic integrity during DNA replication, which counteracts developmental abnormalities and tumour growth. Finally, we identify the CHK1 kinase as a potential therapeutic target in AMBRA1-deficient tumours. These results advance our understanding of the control of replication-phase entry and genomic integrity, and identify the AMBRA1-cyclin D pathway as a crucial cell-cycle-regulatory mechanism that is deeply interconnected with genomic stability in embryonic development and tumorigenesis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ciclina D/metabolismo , Instabilidade Genômica , Fase S , Animais , Linhagem Celular , Proliferação de Células , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Humanos , Camundongos , Camundongos Knockout , Mutações Sintéticas Letais
17.
Eur Respir J ; 58(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33795320

RESUMO

BACKGROUND: Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies followed by ciliated differentiation at the air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that can be expanded from such biopsies. METHODS: We describe an immunofluorescence screening method, enabled by extensive expansion of basal cells from PCD patients and the directed differentiation of these cells into ciliated epithelium in miniaturised 96-well transwell format ALI cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. RESULTS: Initial analyses of ciliary ultrastructure, beat pattern and beat frequency in the 96-well transwell format ALI cultures indicate that a range of different PCD defects can be retained in these cultures. The screening system in our proof-of-principal investigation allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. We observed restoration of basal body formation but not the generation of cilia in the patient's nasal epithelial cells in vitro. CONCLUSION: Our study provides a platform for higher throughput analyses of airway epithelia that is applicable in a range of settings and suggests novel avenues for drug evaluation and development in PCD caused by nonsense mutations.


Assuntos
Transtornos da Motilidade Ciliar , Síndrome de Kartagener , Cílios , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/tratamento farmacológico , Transtornos da Motilidade Ciliar/genética , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/tratamento farmacológico , Síndrome de Kartagener/genética , Depuração Mucociliar
18.
Am J Respir Cell Mol Biol ; 65(1): 22-29, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33625958

RESUMO

The National Heart, Lung, and Blood Institute of the National Institutes of Health, together with the Longfonds BREATH consortium, convened a working group to review the field of lung regeneration and suggest avenues for future research. The meeting took place on May 22, 2019, at the American Thoracic Society 2019 conference in Dallas, Texas, United States, and brought together investigators studying lung development, adult stem-cell biology, induced pluripotent stem cells, biomaterials, and respiratory disease. The purpose of the working group was 1) to examine the present status of basic science approaches to tackling lung disease and promoting lung regeneration in patients and 2) to determine priorities for future research in the field.


Assuntos
Células-Tronco Pluripotentes Induzidas , Pneumopatias , Pulmão/fisiologia , Regeneração , Mucosa Respiratória/fisiologia , Animais , Terapia Baseada em Transplante de Células e Tecidos , Congressos como Assunto , Educação , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Pneumopatias/metabolismo , Pneumopatias/terapia , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
19.
Open Biol ; 11(1): 200247, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33435818

RESUMO

Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although advances are being made towards earlier detection and the development of impactful targeted therapies and immunotherapies, the 5-year survival of patients with advanced disease is still below 20%. Effective cancer research relies on pre-clinical model systems that accurately reflect the evolutionary course of disease progression and mimic patient responses to therapy. Here, we review pre-clinical models, including genetically engineered mouse models and patient-derived materials, such as cell lines, primary cell cultures, explant cultures and xenografts, that are currently being used to interrogate NSCLC evolution from pre-invasive disease through locally invasive cancer to the metastatic colonization of distant organ sites.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Modelos Biológicos , Animais , Carcinogênese , Modelos Animais de Doenças , Humanos , Metástase Neoplásica , Recidiva Local de Neoplasia , Microambiente Tumoral
20.
Am J Respir Cell Mol Biol ; 64(6): 657-668, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33428856

RESUMO

Advances in stem cell biology and the understanding of factors that determine lung stem cell self-renewal have enabled long-term in vitro culture of human lung cells derived from airway basal and alveolar type II cells. Improved capability to expand and study primary cells long term, including in clonal cultures that are recently derived from a single cell, will allow experiments that address fundamental questions about lung homeostasis and repair, as well as translational questions in asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and lung cancer research. Here, we provide a brief history of postnatal lung epithelial cell culture and describe recent methodological advances. We further discuss the applications of primary cultures in defining "normal" epithelium, in modeling lung disease, and in future cell therapies.


Assuntos
Células Epiteliais/patologia , Pneumopatias/patologia , Pulmão/patologia , Modelos Biológicos , Células-Tronco/patologia , Células Cultivadas , Humanos , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...