Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Elife ; 112022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36125123

RESUMO

Pharmacological and genetic studies over the past decade have established the follicle-stimulating hormone (FSH) as an actionable target for diseases affecting millions, namely osteoporosis, obesity, and Alzheimer's disease. Blocking FSH action prevents bone loss, fat gain, and neurodegeneration in mice. We recently developed a first-in-class, humanized, epitope-specific FSH-blocking antibody, MS-Hu6, with a KD of 7.52 nM. Using a Good Laboratory Practice (GLP)-compliant platform, we now report the efficacy of MS-Hu6 in preventing and treating osteoporosis in mice and parameters of acute safety in monkeys. Biodistribution studies using 89Zr-labeled, biotinylated or unconjugated MS-Hu6 in mice and monkeys showed localization to bone and bone marrow. The MS-Hu6 displayed a ß phase t½ of 7.5 days (180 hr) in humanized Tg32 mice. We tested 217 variations of excipients using the protein thermal shift assay to generate a final formulation that rendered MS-Hu6 stable in solution upon freeze-thaw and at different temperatures, with minimal aggregation, and without self-, cross-, or hydrophobic interactions or appreciable binding to relevant human antigens. The MS-Hu6 showed the same level of "humanness" as human IgG1 in silico and was non-immunogenic in ELISpot assays for IL-2 and IFN-γ in human peripheral blood mononuclear cell cultures. We conclude that MS-Hu6 is efficacious, durable, and manufacturable, and is therefore poised for future human testing.


Assuntos
Hormônio Foliculoestimulante , Osteoporose , Animais , Epitopos/metabolismo , Excipientes , Hormônio Foliculoestimulante/metabolismo , Humanos , Imunoglobulina G/metabolismo , Interleucina-2/metabolismo , Leucócitos Mononucleares/metabolismo , Camundongos , Osteoporose/tratamento farmacológico , Distribuição Tecidual
2.
Nature ; 603(7901): 470-476, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236988

RESUMO

Alzheimer's disease has a higher incidence in older women, with a spike in cognitive decline that tracks with visceral adiposity, dysregulated energy homeostasis and bone loss during the menopausal transition1,2. Inhibiting the action of follicle-stimulating hormone (FSH) reduces body fat, enhances thermogenesis, increases bone mass and lowers serum cholesterol in mice3-7. Here we show that FSH acts directly on hippocampal and cortical neurons to accelerate amyloid-ß and Tau deposition and impair cognition in mice displaying features of Alzheimer's disease. Blocking FSH action in these mice abrogates the Alzheimer's disease-like phenotype by inhibiting the neuronal C/EBPß-δ-secretase pathway. These data not only suggest a causal role for rising serum FSH levels in the exaggerated Alzheimer's disease pathophysiology during menopause, but also reveal an opportunity for treating Alzheimer's disease, obesity, osteoporosis and dyslipidaemia with a single FSH-blocking agent.


Assuntos
Doença de Alzheimer , Hormônio Foliculoestimulante , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Densidade Óssea , Cognição , Feminino , Hormônio Foliculoestimulante/metabolismo , Humanos , Camundongos , Termogênese
3.
Cell Metab ; 34(3): 347-349, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235770

RESUMO

In this issue of Cell Metabolism, Lu et al. show that chronic liver disease increases the expression and activity of PP2Ac, a phosphatase that downregulates the excretion of lecithin-cholesterol aceyltransferase (LCAT). LCAT, a liver-derived enzyme, protects bone and prevents bone loss, and its lowered levels in progressive liver injury cause hepatic osteodystrophy (HOD) and worsen liver fibrosis. These discoveries open the possibility that recombinant LCAT may be a treatment for both HOD and liver fibrosis.


Assuntos
Colesterol , Fosfatidilcolina-Esterol O-Aciltransferase , Colesterol/metabolismo , Progressão da Doença , Humanos , Cirrose Hepática , Fosfatidilcolina-Esterol O-Aciltransferase/biossíntese
4.
J Clin Endocrinol Metab ; 106(12): e4809-e4821, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34318885

RESUMO

Thyrotropin (TSH), traditionally seen as a pituitary hormone that regulates thyroid glands, has additional roles in physiology including skeletal remodeling. Population-based observations in people with euthyroidism or subclinical hyperthyroidism indicated a negative association between bone mass and low-normal TSH. The findings of correlative studies were supported by small intervention trials using recombinant human TSH (rhTSH) injection, and genetic and case-based evidence. Genetically modified mouse models, which disrupt the reciprocal relationship between TSH and thyroid hormone, have allowed us to examine an independent role of TSH. Since the first description of osteoporotic phenotype in haploinsufficient Tshr +/- mice with normal thyroid hormone levels, the antiosteoclastic effect of TSH has been documented in both in vitro and in vivo studies. Further studies showed that increased osteoclastogenesis in Tshr-deficient mice was mediated by tumor necrosis factor α. Low TSH not only increased osteoclastogenesis, but also decreased osteoblastogenesis in bone marrow-derived primary osteoblast cultures. However, later in vivo studies using small and intermittent doses of rhTSH showed a proanabolic effect, which suggests that its action might be dose and frequency dependent. TSHR was shown to interact with insulin-like growth factor 1 receptor, and vascular endothelial growth factor and Wnt pathway might play a role in TSH's effect on osteoblasts. The expression and direct skeletal effect of a biologically active splice variant of the TSHß subunit (TSHßv) in bone marrow-derived macrophage and other immune cells suggest a local skeletal effect of TSHR. Further studies of how locally secreted TSHßv and systemic TSHß interact in skeletal remodeling through the endocrine, immune, and skeletal systems will help us better understand the hyperthyroidism-induced bone disease.


Assuntos
Doenças Ósseas/patologia , Osso e Ossos/patologia , Hipertireoidismo/complicações , Tireotropina/metabolismo , Animais , Doenças Ósseas/etiologia , Doenças Ósseas/metabolismo , Humanos
5.
Elife ; 102021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33876726

RESUMO

Diagnosis of SARS-CoV-2 (COVID-19) requires confirmation by reverse transcription-polymerase chain reaction (RT-PCR). Abbott ID NOW provides fast results but has been criticized for low sensitivity. Here we determine the sensitivity of ID NOW in an ambulatory population presented for testing. The study enrolled 785 symptomatic patients, of whom 21 were positive by both ID NOW and RT-PCR, and 2 only by RT-PCR. All 189 asymptomatic patients tested negative. The positive percent agreement between the ID NOW assay and the RT-PCR assay was 91.3%, and negative percent agreement was 100%. The results from the current study were included into a larger systematic review of literature where at least 20 subjects were simultaneously tested using ID NOW and RT-PCR. The overall sensitivity for ID NOW assay was calculated at 84% (95% confidence interval 55-96%) and had the highest correlation to RT-PCR at viral loads most likely to be associated with transmissible infections.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/isolamento & purificação , Adulto , Feminino , Genoma Viral , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/virologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Sistemas Automatizados de Assistência Junto ao Leito , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes , Carga Viral
6.
Cell ; 184(5): 1137-1139, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636131

RESUMO

In this issue of Cell, McDonald et al. show that giant multinucleated, bone-resorbing osteoclasts dissolve into smaller cells, termed "osteopmorhs," which re-form into osteoclasts at distal bone sites (McDonald et al., 2021). These findings overturn the long-standing premise that osteoclasts differentiate solely from hematopoietic precursors and undergo apoptosis after completing resorption.


Assuntos
Reabsorção Óssea , Osso e Ossos , Humanos , Osteoclastos
7.
Ann N Y Acad Sci ; 1487(1): 21-30, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32860248

RESUMO

The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway plays a critical role in skeletal homeostasis. Preclinical data using NO and its donors and genetically modified mice demonstrated that NO was required in bone remodeling and partly mediated the anabolic effects of mechanical stimuli and estrogen. However, the off-target effects and tachyphylaxis of NO limit its long-term use, and previous clinical trials using organic nitrates for osteoporosis have been disappointing. Among the other components in the downstream pathway, targeting cGMP-specific phosphodiesterase to promote the NO-cGMP-PKG signal is a viable option. There are growing in vitro and in vivo data that, among many other PDE families, PDE5A is highly expressed in skeletal tissue, and inhibiting PDE5A using currently available PDE5A inhibitors might increase the osteoanabolic signal and protect the skeleton. These preclinical data open the possibility of repurposing PDE5A inhibitors for treating osteoporosis. Further research is needed to address the primary target bone cell of PDE5A inhibition, the contribution of direct and indirect effects of PDE5A inhibition, and the pathophysiological changes in skeletal PDE5A expression in aging and hypogonadal animal models.


Assuntos
Remodelação Óssea/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Animais , Osso e Ossos/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/fisiologia , Humanos , Camundongos , Transdução de Sinais/fisiologia
8.
Proc Natl Acad Sci U S A ; 117(46): 28971-28979, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33127753

RESUMO

Blocking the action of FSH genetically or pharmacologically in mice reduces body fat, lowers serum cholesterol, and increases bone mass, making an anti-FSH agent a potential therapeutic for three global epidemics: obesity, osteoporosis, and hypercholesterolemia. Here, we report the generation, structure, and function of a first-in-class, fully humanized, epitope-specific FSH blocking antibody with a KD of 7 nM. Protein thermal shift, molecular dynamics, and fine mapping of the FSH-FSH receptor interface confirm stable binding of the Fab domain to two of five receptor-interacting residues of the FSHß subunit, which is sufficient to block its interaction with the FSH receptor. In doing so, the humanized antibody profoundly inhibited FSH action in cell-based assays, a prelude to further preclinical and clinical testing.


Assuntos
Tecido Adiposo/metabolismo , Anticorpos Bloqueadores/imunologia , Osso e Ossos/metabolismo , Epitopos , Hormônio Foliculoestimulante/imunologia , Animais , Anticorpos Bloqueadores/química , Anticorpos Monoclonais , Densidade Óssea , Feminino , Hormônio Foliculoestimulante/química , Subunidade beta do Hormônio Folículoestimulante/imunologia , Humanos , Hipercolesterolemia , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Obesidade , Osteoporose , Receptores do FSH/metabolismo
9.
Cell Metab ; 32(4): 504-506, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027670

RESUMO

In this issue of the Cell Metabolism, Chevalier et al. show that a warm environment produces changes in the composition of intestinal microbiota and that these changes can prevent bone loss due to hypogonadism. Dovetailing with prior studies on the ability of probiotics to reverse hypogonadism-induced osteopenia, the findings reaffirm a central role for the microbiome in regulating bone mass in response to both environmental and hormonal cues.


Assuntos
Doenças Ósseas Metabólicas , Microbioma Gastrointestinal , Microbiota , Probióticos , Humanos
10.
J Orthop Res ; 38(11): 2331-2338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32519816

RESUMO

Today, research in biomedicine often requires the knowledge and technologies in diverse fields. Therefore, there is an increasing need for collaborative team science that crosses traditional disciplines. Here, we discuss our own lessons from both interdisciplinary and transdisciplinary teams, which ultimately ushered us to expand our research realm beyond bone biology.


Assuntos
Osso e Ossos/metabolismo , Difosfonatos/uso terapêutico , Hormônio Foliculoestimulante/metabolismo , Pesquisa Interdisciplinar , Neoplasias/tratamento farmacológico , Tecido Adiposo/metabolismo , Animais , Hormônio Foliculoestimulante/antagonistas & inibidores , Genes erbB-1 , Humanos , Neoplasias/genética
11.
Proc Natl Acad Sci U S A ; 117(25): 14386-14394, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513693

RESUMO

We report that two widely-used drugs for erectile dysfunction, tadalafil and vardenafil, trigger bone gain in mice through a combination of anabolic and antiresorptive actions on the skeleton. Both drugs were found to enhance osteoblastic bone formation in vivo using a unique gene footprint and to inhibit osteoclast formation. The target enzyme, phosphodiesterase 5A (PDE5A), was found to be expressed in mouse and human bone as well as in specific brain regions, namely the locus coeruleus, raphe pallidus, and paraventricular nucleus of the hypothalamus. Localization of PDE5A in sympathetic neurons was confirmed by coimmunolabeling with dopamine ß-hydroxylase, as well as by retrograde bone-brain tracing using a sympathetic nerve-specific pseudorabies virus, PRV152. Both drugs elicited an antianabolic sympathetic imprint in osteoblasts, but with net bone gain. Unlike in humans, in whom vardenafil is more potent than tadalafil, the relative potencies were reversed with respect to their osteoprotective actions in mice. Structural modeling revealed a higher binding energy of tadalafil to mouse PDE5A compared with vardenafil, due to steric clashes of vardenafil with a single methionine residue at position 806 in mouse PDE5A. Collectively, our findings suggest that a balance between peripheral and central actions of PDE5A inhibitors on bone formation together with their antiresorptive actions specify the osteoprotective action of PDE5A blockade.


Assuntos
Disfunção Erétil/tratamento farmacológico , Osteogênese/efeitos dos fármacos , Osteoporose/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Envelhecimento/fisiologia , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Osso e Ossos/citologia , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Reposicionamento de Medicamentos , Disfunção Erétil/complicações , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Modelos Moleculares , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Osteoporose/complicações , Fraturas por Osteoporose/etiologia , Fraturas por Osteoporose/prevenção & controle , Inibidores da Fosfodiesterase 5/química , Inibidores da Fosfodiesterase 5/uso terapêutico , Cultura Primária de Células , Tadalafila/química , Tadalafila/farmacologia , Tadalafila/uso terapêutico , Dicloridrato de Vardenafila/química , Dicloridrato de Vardenafila/farmacologia , Dicloridrato de Vardenafila/uso terapêutico
12.
Proc Natl Acad Sci U S A ; 116(52): 26808-26815, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31843930

RESUMO

The primitive neurohypophyseal nonapeptide oxytocin (OXT) has established functions in parturition, lactation, appetite, and social behavior. We have shown that OXT has direct actions on the mammalian skeleton, stimulating bone formation by osteoblasts and modulating the genesis and function of bone-resorbing osteoclasts. We deleted OXT receptors (OXTRs) selectively in osteoblasts and osteoclasts using Col2.3Cre and Acp5Cre mice, respectively. Both male and female Col2.3Cre+:Oxtrfl/fl mice recapitulate the low-bone mass phenotype of Oxtr+/- mice, suggesting that OXT has a prominent osteoblastic action in vivo. Furthermore, abolishment of the anabolic effect of estrogen in Col2.3Cre+:Oxtrfl/fl mice suggests that osteoblastic OXTRs are necessary for estrogen action. In addition, the high bone mass in Acp5Cre+:Oxtrfl/fl mice indicates a prominent action of OXT in stimulating osteoclastogenesis. In contrast, we found that in pregnant and lactating Col2.3Cre+:Oxtrfl/fl mice, elevated OXT inhibits bone resorption and rescues the bone loss otherwise noted during pregnancy and lactation. However, OXT does not contribute to ovariectomy-induced bone loss. Finally, we show that OXT acts directly on OXTRs on adipocytes to suppress the white-to-beige transition gene program. Despite this direct antibeiging action, injected OXT reduces total body fat, likely through an action on OXT-ergic neurons. Consistent with an antiobesity action of OXT, Oxt-/- and Oxtr-/- mice display increased total body fat. Overall, the actions of OXT on bone mass and body composition provide the framework for future therapies for osteoporosis and obesity.

13.
J Mol Endocrinol ; 63(3): R73-R80, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454787

RESUMO

FSH has a primary function in procreation, wherein it induces estrogen production in females and regulates spermatogenesis in males. However, in line with our discoveries over the past decade of non-unitary functions of pituitary hormones, we and others have described hitherto uncharacterized functions of FSH. Through high-affinity receptors, some of which are variants of the ovarian FSH receptor (FSHR), FSH regulates bone mass, adipose tissue function, energy metabolism, and cholesterol production in both sexes. These newly described actions of FSH may indeed be relevant to the pathogenesis of bone loss, dysregulated energy homeostasis, and disordered lipid metabolism that accompany the menopause in females and aging in both genders. We are therefore excited about the possibility of modulating circulating FSH levels toward a therapeutic benefit for a host of age-associated diseases, including osteoporosis, obesity and dyslipidemia, among other future possibilities.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Menopausa/metabolismo , Animais , Anticorpos Bloqueadores/farmacologia , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Colesterol/metabolismo , Humanos , Menopausa/efeitos dos fármacos , Termogênese/efeitos dos fármacos
14.
FASEB J ; 33(8): 9167-9181, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31063702

RESUMO

The mitochondria-to-nucleus retrograde signaling (MtRS) pathway aids in cellular adaptation to stress. We earlier reported that the Ca2+- and calcineurin-dependent MtRS induces macrophage differentiation to bone-resorbing osteoclasts. However, mechanisms through which macrophages sense and respond to cellular stress remain unclear. Here, we induced mitochondrial stress in macrophages by knockdown (KD) of subunits IVi1 or Vb of cytochrome c oxidase (CcO). Whereas both IVi1 and Vb KD impair CcO activity, IVi1 KD cells produced higher levels of cellular and mitochondrial reactive oxygen species with increased glycolysis. Additionally, IVi1 KD induced the activation of MtRS factors NF-κB, NFAT2, and C/EBPδ as well as inflammatory cytokines, NOS 2, increased phagocytic activity, and a greater osteoclast differentiation potential at suboptimal RANK-L concentrations. The osteoclastogenesis in IVi1 KD cells was reversed fully with an IL-6 inhibitor LMT-28, whereas there was minimal rescue of the enhanced phagocytosis in these cells. In agreement with our findings in cultured macrophages, primary bone marrow-derived macrophages from MPV17-/- mice, a model for mitochondrial dysfunction, also showed higher propensity for osteoclast formation. This is the first report showing that CcO dysfunction affects inflammatory pathways, phagocytic function, and osteoclastogenesis.-Angireddy, R., Kazmi, H. R., Srinivasan, S., Sun, L., Iqbal, J., Fuchs, S. Y., Guha, M., Kijima, T., Yuen, T., Zaidi, M., Avadhani, N. G. Cytochrome c oxidase dysfunction enhances phagocytic function and osteoclast formation in macrophages.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Macrófagos/citologia , Macrófagos/fisiologia , Osteoclastos/citologia , Osteoclastos/fisiologia , Fagocitose/fisiologia , Animais , Diferenciação Celular , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Silenciamento de Genes , Macrófagos/classificação , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Mitocôndrias/metabolismo , Osteogênese , Células RAW 264.7 , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
15.
Nat Cell Biol ; 21(4): 417-419, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30936470
16.
Endocrinology ; 159(10): 3503-3514, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085049

RESUMO

The Study of Women's Health Across the Nation has taught us that impending ovarian failure during late perimenopause is associated with a sharp rise in serum FSH, which coincides with the most rapid rate of bone loss and the onset of visceral adiposity. At this time in a woman's life, serum estrogen levels are largely unaltered, so the hypothesis that hypoestrogenemia is the sole cause of bone loss and visceral obesity does not offer a full explanation. An alternative explanation, arising from animal models and human data, is that both physiologic aberrations, obesity and osteoporosis, arise at least in part from rising FSH levels. Here, we discuss recent findings on the mechanism through which FSH exerts biological actions on bone and fat and review clinical data that support a role for FSH in causing osteoporosis and obesity. We will also provide a conceptual framework for using a single anti-FSH agent to prevent and treat both osteoporosis and obesity in women across the menopausal transition.


Assuntos
Tecido Adiposo/metabolismo , Envelhecimento , Osso e Ossos/metabolismo , Hormônio Foliculoestimulante/metabolismo , Índice de Massa Corporal , Densidade Óssea , Estrogênios/sangue , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Osteoporose/sangue
17.
J Clin Invest ; 128(4): 1255-1257, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29504950

RESUMO

Bone formation and resorption are tightly coupled, and dysfunction of either process leads to bone diseases, such as osteoporosis. Bone-forming agents have been explored clinically to increase bone density; however, long-term efficacy of these strategies is limited due to the accompanying increase in resorption in response to increased bone formation. Axonal guidance molecules have recently been shown to regulate formation-resorption coupling and thus have the potential for osteoporosis therapy. In this issue of the JCI, Kim et al. demonstrate that osteoclast-secreted SLIT3 influences bone formation and resorption by promoting osteoblast migration and suppressing osteoclast differentiation. Activation of SLIT3/ROBO signaling in ovariectomized mice increased bone mass, suggesting that SLIT3 should be further explored as a therapeutic target.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Remodelação Óssea , Diferenciação Celular , Proteínas de Membrana , Camundongos , Osteoblastos
18.
Proc Natl Acad Sci U S A ; 115(9): 2192-2197, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440419

RESUMO

Pituitary hormones have long been thought solely to regulate single targets. Challenging this paradigm, we discovered that both anterior and posterior pituitary hormones, including FSH, had other functions in physiology. We have shown that FSH regulates skeletal integrity, and, more recently, find that FSH inhibition reduces body fat and induces thermogenic adipose tissue. A polyclonal antibody raised against a short, receptor-binding epitope of FSHß was found not only to rescue bone loss postovariectomy, but also to display marked antiobesity and probeiging actions. Questioning whether a single agent could be used to treat two medical conditions of public health importance--osteoporosis and obesity--we developed two further monoclonal antibodies, Hf2 and Mf4, against computationally defined receptor-binding epitopes of FSHß. Hf2 has already been shown to reduce body weight and fat mass and cause beiging in mice on a high-fat diet. Here, we show that Hf2, which binds mouse Fsh in immunoprecipitation assays, also increases cortical thickness and trabecular bone volume, and microstructural parameters, in sham-operated and ovariectomized mice, noted on microcomputed tomography. This effect was largely recapitulated with Mf4, which inhibited bone resorption by osteoclasts and stimulated new bone formation by osteoblasts. These effects were exerted in the absence of alterations in serum estrogen in wild-type mice. We also reconfirm the existence of Fshrs in bone by documenting the specific binding of fluorescently labeled FSH, FSH-CH, in vivo. Our study provides the framework for the future development of an FSH-based therapeutic that could potentially target both bone and fat.


Assuntos
Anticorpos Monoclonais/farmacologia , Epitopos , Subunidade beta do Hormônio Folículoestimulante/imunologia , Animais , Especificidade de Anticorpos , Densidade Óssea , Reabsorção Óssea , Domínio Catalítico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ovariectomia , Ligação Proteica , Conformação Proteica
19.
Nature ; 546(7656): 107-112, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538730

RESUMO

Menopause is associated with bone loss and enhanced visceral adiposity. A polyclonal antibody that targets the ß-subunit of the pituitary hormone follicle-stimulating hormone (Fsh) increases bone mass in mice. Here, we report that this antibody sharply reduces adipose tissue in wild-type mice, phenocopying genetic haploinsufficiency for the Fsh receptor gene Fshr. The antibody also causes profound beiging, increases cellular mitochondrial density, activates brown adipose tissue and enhances thermogenesis. These actions result from the specific binding of the antibody to the ß-subunit of Fsh to block its action. Our studies uncover opportunities for simultaneously treating obesity and osteoporosis.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Subunidade beta do Hormônio Folículoestimulante/antagonistas & inibidores , Termogênese , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo Bege/efeitos dos fármacos , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Feminino , Subunidade beta do Hormônio Folículoestimulante/imunologia , Haploinsuficiência , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Osteoporose/tratamento farmacológico , Ovariectomia , Consumo de Oxigênio/efeitos dos fármacos , Receptores do FSH/antagonistas & inibidores , Receptores do FSH/genética , Receptores do FSH/metabolismo , Termogênese/efeitos dos fármacos , Proteína Desacopladora 1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...