Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38929155

RESUMO

Skeletal muscle contraction evokes numerous biochemical alterations that underpin exercise benefits. This present study aimed to elucidate the mechanism for electrical pulse stimulation (EPS)-induced antioxidant adaptation in C2C12 myotubes. We found that EPS significantly upregulated Nrf2 and a broad array of downstream antioxidant enzymes involved in multiple antioxidant systems. These effects were completely abolished by pretreatment with a ROS scavenger, N-acetylcysteine. MitoSOX-Red, CM-H2DCFDA, and EPR spectroscopy revealed a significantly higher ROS level in mitochondria and cytosol in EPS cells compared to non-stimulated cells. Seahorse and Oroboros revealed that EPS significantly increased the maximal mitochondrial oxygen consumption rate, along with an upregulated protein expression of mitochondrial complexes I/V, mitofusin-1, and mitochondrial fission factor. A post-stimulation time-course experiment demonstrated that upregulated NQO1 and GSTA2 last at least 24 h following the cessation of EPS, whereas elevated ROS declines immediately. These findings suggest an antioxidant preconditioning effect in the EPS cells. A cell viability study suggested that the EPS cells displayed 11- and 36-fold higher survival rates compared to the control cells in response to 2 and 4 mM H2O2 treatment, respectively. In summary, we found that EPS upregulated a large group of antioxidant enzymes in C2C12 myotubes via a contraction-mitochondrial-ROS-Nrf2 pathway. This antioxidant adaptation protects cells against oxidative stress-associated cytotoxicity.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38687468

RESUMO

High levels of oxidant stress in the form of reactive oxidant species (ROS) are prevalent in the circulation and tissues in various types of cardiovascular disease including heart failure, hypertension, peripheral arterial disease, and stroke. Here we review the role of nuclear factor erythroid 2-related factor 2 (Nrf2), an important and widespread antioxidant and anti-inflammatory transcription factor that may contribute to the pathogenesis and maintenance of cardiovascular diseases. We review studies showing that downregulation of Nrf2 exacerbates heart failure, hypertension and autonomic function. Finally, we discuss the potential for using Nrf2 modulation as a therapeutic strategy for cardiovascular diseases and autonomic dysfunction.

3.
Life (Basel) ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38398707

RESUMO

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-ß and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.

4.
Life (Basel) ; 13(11)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38004296

RESUMO

Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-ß accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-ß generation and improving neuronal health by maintaining mitochondrial function in neurons.

5.
Front Physiol ; 14: 1288907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033338

RESUMO

Introduction: Chronic Heart failure (CHF) is a highly prevalent disease that leads to significant morbidity and mortality. Diffuse vasculopathy is a commonmorbidity associated with CHF. Increased vascular permeability leading to plasma extravasation (PEx) occurs in surrounding tissues following endothelial dysfunction. Such micro- and macrovascular complications develop over time and lead to edema, inflammation, and multi-organ dysfunction in CHF. However, a systemic examination of PEx in vital organs among different time windows of CHF has never been performed. In the present study, we investigated time-dependent PEx in several major visceral organs including heart, lung, liver, spleen, kidney, duodenum, ileum, cecum, and pancreas between sham-operated and CHF rats induced by myocardial infarction (MI). Methods: Plasma extravasation was determined by colorimetric evaluation of Evans Blue (EB) concentrations at 3 days, ∼10 weeks and 4 months following MI. Results: Data show that cardiac PEx was initially high at day 3 post MI and then gradually decreased but remained at a moderately high level at ∼10 weeks and 4 months post MI. Lung PEx began at day 3 and remained significantly elevated at both ∼10 weeks and 4 months post MI. Spleen PExwas significantly increased at ∼10 weeks and 4 months but not on day 3 post MI. Liver PEx occurred early at day 3 and remain significantly increased at ∼10 weeks and 4 months post MI. For the gastrointestinal (GI) organs including duodenum, ileum and cecum, there was a general trend that PEx level gradually increased following MI and reached statistical significance at either 10 weeks or 4 months post MI. Similar to GI PEx, renal PEx was significantly elevated at 4 months post MI. Discussion: In summary, we found that MI generally incites a timedependent PEx of multiple visceral organs. However, the PEx time window for individual organs in response to the MI challenge was different, suggesting that different mechanisms are involved in the pathogenesis of PEx in these vital organs during the development of CHF.

6.
Cells ; 12(17)2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37681877

RESUMO

Extracellular vesicles (EVs) are emerging mediators of intracellular and inter-organ communications in cardiovascular diseases (CVDs), especially in the pathogenesis of heart failure through the transference of EV-containing bioactive substances. microRNAs (miRNAs) are contained in EV cargo and are involved in the progression of heart failure. Over the past several years, a growing body of evidence has suggested that the biogenesis of miRNAs and EVs is tightly regulated, and the sorting of miRNAs into EVs is highly selective and tightly controlled. Extracellular miRNAs, particularly circulating EV-miRNAs, have shown promising potential as prognostic and diagnostic biomarkers for heart failure and as therapeutic targets. In this review, we summarize the latest progress concerning the role of EV-miRNAs in HF and their application in a therapeutic strategy development for heart failure.


Assuntos
Doenças Cardiovasculares , Vesículas Extracelulares , Insuficiência Cardíaca , MicroRNAs , Humanos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Movimento Celular , Vesículas Extracelulares/genética , MicroRNAs/genética
7.
Medicina (Kaunas) ; 59(6)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37374288

RESUMO

As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Inflamação/metabolismo , Encéfalo/patologia , Citocinas/metabolismo , Cognição
9.
Front Physiol ; 14: 1101408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846321

RESUMO

Introduction: Acute lung injury (ALI) initiates an inflammatory cascade that impairs gas exchange, induces hypoxemia, and causes an increase in respiratory rate (fR). This stimulates the carotid body (CB) chemoreflex, a fundamental protective reflex that maintains oxygen homeostasis. Our previous study indicated that the chemoreflex is sensitized during the recovery from ALI. The superior cervical ganglion (SCG) is known to innervate the CB, and its electrical stimulation has been shown to significantly sensitize the chemoreflex in hypertensive and normotensive rats. We hypothesized that the SCG is involved in the chemoreflex sensitization post-ALI. Methods: We performed a bilateral SCG ganglionectomy (SCGx) or sham-SCGx (Sx) in male Sprague Dawley rats 2 weeks before inducing ALI (Week -2 i.e., W-2). ALI was induced using a single intra-tracheal instillation of bleomycin (bleo) (day 1). Resting-fR, Vt (Tidal Volume), and V̇ E (Minute Ventilation) were measured. The chemoreflex response to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before surgery on W (-3), before bleo administration on W0 and on W4 post-bleo using whole-body plethysmography (WBP). Results: SCGx did not affect resting fR, Vt and V̇E as well as the chemoreflex responses to hypoxia and normoxic hypercapnia in either group prior to bleo. There was no significant difference in ALI-induced increase in resting fR between Sx and SCGx rats at W1 post-bleo. At W4 post-bleo, there were no significant differences in resting fR, Vt, and V̇E between Sx and SCGx rats. Consistent with our previous study, we observed a sensitized chemoreflex (delta fR) in response to hypoxia and normoxic hypercapnia in Sx rats at W4 post-bleo. However, at the same time, compared to Sx rats, the chemoreflex sensitivity was significantly less in SCGx rats in response to either hypoxia or normoxic hypercapnia. Discussion: These data suggest that SCG is involved in the chemoreflex sensitization during ALI recovery. Further understanding of the underlying mechanism will provide important information for the long-term goal of developing novel targeted therapeutic approaches to pulmonary diseases to improve clinical outcomes.

10.
J Clin Med ; 12(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36769450

RESUMO

The cardio-renal syndrome (CRS) type 2 is defined as a progressive loss of renal function following a primary insult to the myocardium that may be either acute or chronic but is accompanied by a decline in myocardial pump performance. The treatment of patients with CRS is difficult, and the disease often progresses to end-stage renal disease that is refractory to conventional therapy. While a good deal of information is known concerning renal injury in the CRS, less is understood about how reflex control of renal sympathetic nerve activity affects this syndrome. In this review, we provide insight into the role of the renal nerves, both from the afferent or sensory side and from the efferent side, in mediating renal dysfunction in CRS. We discuss how interventions such as renal denervation and abrogation of systemic reflexes may be used to alleviate renal dysfunction in the setting of chronic heart failure. We specifically focus on a novel cardiac sensory reflex that is sensitized in heart failure and activates the sympathetic nervous system, especially outflow to the kidney. This so-called Cardiac Sympathetic Afferent Reflex (CSAR) can be ablated using the potent neurotoxin resinferitoxin due to the high expression of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors. Following ablation of the CSAR, several markers of renal dysfunction are reversed in the post-myocardial infarction heart failure state. This review puts forth the novel idea of neuromodulation at the cardiac level in the treatment of CRS Type 2.

11.
Antioxidants (Basel) ; 12(1)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36671013

RESUMO

Exercise training (ExT) improves skeletal muscle health via multiple adaptative pathways. Nrf2 is a principal antioxidant transcription factor responsible for maintaining intracellular redox homeostasis. In this study, we hypothesized that Nrf2 is essential for adaptative responses to ExT and thus beneficial for muscle. Experiments were carried out on male wild type (WT) and iMS-Nrf2flox/flox inducible muscle-specific Nrf2 (KO) mice, which were randomly assigned to serve as sedentary controls (Sed) or underwent 3 weeks of treadmill ExT thus generating four groups: WT-Sed, WT-ExT, KO-Sed, and KO-ExT groups. Mice were examined for exercise performance and in situ tibialis anterior (TA) contractility, followed by mass spectrometry-based proteomics and bioinformatics to identify differentially expressed proteins and signaling pathways. We found that maximal running distance was significantly longer in the WT-ExT group compared to the WT-Sed group, whereas this capacity was impaired in KO-ExT mice. Force generation and fatigue tolerance of the TA were enhanced in WT-ExT, but reduced in KO-ExT, compared to Sed controls. Proteomic analysis further revealed that ExT upregulated 576 proteins in WT but downregulated 207 proteins in KO mice. These proteins represent pathways in redox homeostasis, mitochondrial respiration, and proteomic adaptation of muscle to ExT. In summary, our data suggest a critical role of Nrf2 in the beneficial effects of SkM and adaptation to ExT.

12.
Psychol Med ; 53(9): 4181-4191, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621161

RESUMO

BACKGROUND: The transition from military service to civilian life is a high-risk period for suicide attempts (SAs). Although stressful life events (SLEs) faced by transitioning soldiers are thought to be implicated, systematic prospective evidence is lacking. METHODS: Participants in the Army Study to Assess Risk and Resilience in Servicemembers (STARRS) completed baseline self-report surveys while on active duty in 2011-2014. Two self-report follow-up Longitudinal Surveys (LS1: 2016-2018; LS2: 2018-2019) were subsequently administered to probability subsamples of these baseline respondents. As detailed in a previous report, a SA risk index based on survey, administrative, and geospatial data collected before separation/deactivation identified 15% of the LS respondents who had separated/deactivated as being high-risk for self-reported post-separation/deactivation SAs. The current report presents an investigation of the extent to which self-reported SLEs occurring in the 12 months before each LS survey might have mediated/modified the association between this SA risk index and post-separation/deactivation SAs. RESULTS: The 15% of respondents identified as high-risk had a significantly elevated prevalence of some post-separation/deactivation SLEs. In addition, the associations of some SLEs with SAs were significantly stronger among predicted high-risk than lower-risk respondents. Demographic rate decomposition showed that 59.5% (s.e. = 10.2) of the overall association between the predicted high-risk index and subsequent SAs was linked to these SLEs. CONCLUSIONS: It might be possible to prevent a substantial proportion of post-separation/deactivation SAs by providing high-risk soldiers with targeted preventive interventions for exposure/vulnerability to commonly occurring SLEs.


Assuntos
Militares , Tentativa de Suicídio , Humanos , Estados Unidos , Estudos Longitudinais , Estudos Prospectivos , Fatores de Risco
13.
Front Physiol ; 13: 1009607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338487

RESUMO

Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. The neural mechanisms underlying the respiratory dysfunction during ALI are not fully understood. The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI. We hypothesized that the increase in respiratory rate (fR) during post-ALI is mediated by a sensitized chemoreflex. ALI was induced in male Sprague-Dawley rats using a single intra-tracheal injection of bleomycin (Bleo: low-dose = 1.25 mg/Kg or high-dose = 2.5 mg/Kg) (day 1) and respiratory variables- fR, Vt (Tidal Volume), and VE (Minute Ventilation) in response to 10% hypoxia (10% O2, 0% CO2) and 5% hypercapnia/21% normoxia (21% O2, 5% CO2) were measured weekly from W0-W4 using whole-body plethysmography (WBP). Our data indicate sensitization (∆fR = 93 ± 31 bpm, p < 0.0001) of the chemoreflex at W1 post-ALI in response to hypoxic/hypercapnic gas challenge in the low-dose bleo (moderate ALI) group and a blunted chemoreflex (∆fR = -0.97 ± 42 bpm, p < 0.0001) at W1 post-ALI in the high-dose bleo (severe ALI) group. During recovery from ALI, at W3-W4, both low-dose and high-dose groups exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia. We then hypothesized that the blunted chemoreflex at W1 post-ALI in the high-dose bleo group could be due to near maximal tonic activation of chemoreceptors, called the "ceiling effect". To test this possibility, 90% hyperoxia (90% O2, 0% CO2) was given to bleo treated rats to inhibit the chemoreflex. Our results showed no changes in fR, suggesting absence of the tonic chemoreflex activation in response to hypoxia at W1 post-ALI. These data suggest that during the acute stage of moderate (low-dose bleo) and severe (high-dose bleo) ALI, chemoreflex activity trends to be slightly sensitized and blunted, respectively while it becomes significantly sensitized during the recovery stage. Future studies are required to examine the molecular/cellular mechanisms underlying the time-course changes in chemoreflex sensitivity post-ALI.

14.
Circ Res ; 131(8): 687-700, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36098045

RESUMO

BACKGROUND: Chronic heart failure (CHF) is associated with redox imbalance. Downregulation of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) plays important roles in disrupting myocardial redox homeostasis and mediating sympathetic nerve activity in the setting of CHF. However, it is unclear if circulating extracellular vesicles (EVs) elicit sympathetic excitation in CHF by disrupting central redox homeostasis. We tested the hypothesis that cardiac-derived EVs circulate to the presympathetic rostral ventrolateral medulla and contribute to oxidative stress and sympathetic excitation via EV-enriched microRNA-mediated Nrf2 downregulation. METHODS: Data were collected on rats with CHF post-myocardial infarction (MI) and on human subjects with ischemic CHF. EVs were isolated from tissue and plasma, and we determined the miRNAs cargo that related to targeting Nrf2 translation. We tracked the distribution of cardiac-derived EVs using in vitro labeled circulating EVs and cardiac-specific membrane GFP+ transgenic mice. Finally, we tested the impact of exogenously loading of antagomirs to specific Nrf2-related miRNAs on CHF-EV-induced pathophysiological phenotypes in normal rats (eg, sympathetic and cardiac function). RESULTS: Nrf2 downregulation in CHF rats was associated with an upregulation of Nrf2-targeting miRNAs, which were abundant in cardiac-derived and circulating EVs from rats and humans. EVs isolated from the brain of CHF rats were also enriched with Nrf2-targeting miRNAs and cardiac-specific miRNAs. Cardiac-derived EVs were taken up by neurons in the rostral ventrolateral medulla. The administration of cardiac-derived and circulating EVs from CHF rats into the rostral ventrolateral medulla of normal rats evoked an increase in renal sympathetic nerve activity and plasma norepinephrine compared with Sham-operated rats, which were attenuated by exogenously preloading CHF-EVs with antagomirs to Nrf2-targeting miRNAs. CONCLUSIONS: Cardiac microRNA-enriched EVs from animals with CHF can mediate crosstalk between the heart and the brain in the regulation of sympathetic outflow by targeting the Nrf2/antioxidant signaling pathway. This new endocrine signaling pathway regulating sympathetic outflow in CHF may be exploited for novel therapeutics.


Assuntos
Vesículas Extracelulares , Insuficiência Cardíaca , MicroRNAs , Animais , Antagomirs/metabolismo , Antioxidantes/metabolismo , Vesículas Extracelulares/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Norepinefrina/metabolismo , Ratos , Sistema Nervoso Simpático
15.
J Tradit Complement Med ; 12(5): 447-454, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36081818

RESUMO

Background and aim: Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Prior work showed that resveratrol's anti-atherogenic properties are mediated in part through the adenosine A2A receptor. The present study explores the potential contribution of adenosine A2A receptor activation to neuroprotective action of resveratrol on cognitive deficits in a model of atherosclerosis-prone systemic lupus erythematosus. Experimental procedure: Using behavioral analysis (open field, static rod, novel object recognition) and QRT-PCR, this study measured working memory, anxiety, motor coordination, and expression of mRNA in the brain. Results and conclusion: Data indicate that resveratrol increases working memory, on average but not statistically, and shows a trend towards improved motor coordination (p = 0.07) in atherosclerosis-prone lupus mice. Additionally, resveratrol tends to increase mRNA levels of SIRT1, decrease vascular endothelial growth factor and CX3CL1 mRNA in the hippocampus. Istradefylline, an adenosine A2A receptor antagonist, antagonizes the effects of resveratrol on working memory (p = 0.04) and the expression of SIRT1 (p = 0.03), vascular endothelial growth factor (p = 0.04), and CX3CL1 (p = 0.03) in the hippocampus.This study demonstrates that resveratrol could potentially be a therapeutic candidate in the modulation of cognitive dysfunction in neuropsychiatric lupus, especially motor incoordination. Further human studies, as well as optimization of resveratrol administration, could confirm whether resveratrol may be an additional resource available to reduce the burden of cognitive impairment associated with lupus. Additionally, further studies need to address the role of A2A blockade in cognitive function among the autoimmune population. Section: 3. Dietary therapy/nutrients supplements. Taxonomy classification by EVISE: autoimmunity, inflammation, neurology.

16.
JACC Basic Transl Sci ; 7(6): 582-596, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35818505

RESUMO

Cardiorenal syndrome type 2 (CRS2) is defined as a chronic cardiovascular disease, usually chronic heart failure (CHF), resulting in chronic kidney disease. We hypothesized that the cardiac spinal afferent reflex (CSAR) plays a critical role in the development of CRS2. Our data suggest that cardiac afferent ablation by resiniferatoxin not only improves cardiac function but also benefits the kidneys and increases long-term survival in the myocardial infarction model of CHF. We also found that renal denervation has a similar reno-protective effect in CHF rats. We believe this novel work contributes to the development of a unique neuromodulation therapy to treat CHF patients.

17.
JAMA Netw Open ; 5(6): e2217223, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704316

RESUMO

Importance: Claims of dramatic increases in clinically significant anxiety and depression early in the COVID-19 pandemic came from online surveys with extremely low or unreported response rates. Objective: To examine trend data in a calibrated screening for clinically significant anxiety and depression among adults in the only US government benchmark probability trend survey not disrupted by the COVID-19 pandemic. Design, Setting, and Participants: This survey study used the US Centers for Disease Control and Prevention Behavioral Risk Factor Surveillance System (BRFSS), a monthly state-based trend survey conducted over the telephone. Participants were adult respondents in the 50 US states and District of Columbia who were surveyed March to December 2020 compared with the same months in 2017 to 2019. Exposures: Monthly state COVID-19 death rates. Main Outcomes and Measures: Estimated 30-day prevalence of clinically significant anxiety and depression based on responses to a single BRFSS item calibrated to a score of 6 or greater on the 4-item Patient Health Questionnaire (area under the receiver operating characteristic curve, 0.84). All percentages are weighted based on BRFSS calibration weights. Results: Overall, there were 1 429 354 respondents, with 1 093 663 in 2017 to 2019 (600 416 [51.1%] women; 87 153 [11.8%] non-Hispanic Black; 826 334 [61.5%] non-Hispanic White; 411 254 [27.8%] with college education; and 543 619 [56.8] employed) and 335 691 in 2020 (182 351 [51.3%] women; 25 517 [11.7%] non-Hispanic Black; 250 333 [60.5%] non-Hispanic White; 130 642 [29.3%] with college education; and 168 921 [54.9%] employed). Median within-state response rates were 45.9% to 49.4% in 2017 to 2019 and 47.9% in 2020. Estimated 30-day prevalence of clinically significant anxiety and depression was 0.4 (95% CI, 0.0 to 0.7) percentage points higher in March to December 2020 (12.4%) than March to December 2017 to 2019 (12.1%). This estimated increase was limited, however, to students (2.4 [95% CI, 0.8 to 3.9] percentage points) and the employed (0.9 [95% CI, 0.5 to 1.4] percentage points). Estimated prevalence decreased among the short-term unemployed (-1.8 [95% CI, -3.1 to -0.5] percentage points) and those unable to work (-4.2 [95% CI, -5.3 to -3.2] percentage points), but did not change significantly among the long-term unemployed (-2.1 [95% CI, -4.5 to 0.5] percentage points), homemakers (0.8 [95% CI, -0.3 to 1.9] percentage points), or the retired (0.1 [95% CI, -0.6 to 0.8] percentage points). The increase in anxiety and depression prevalence among employed people was positively associated with the state-month COVID-19 death rate (1.8 [95% CI, 1.2 to 2.5] percentage points when high and 0.0 [95% CI, -0.7 to 0.6] percentage points when low) and was elevated among women compared with men (2.0 [95% CI, 1.4 to 2.5] percentage points vs 0.2 [95% CI, -0.1 to 0.6] percentage points), Non-Hispanic White individuals compared with Hispanic and non-Hispanic Black individuals (1.3 [95% CI, 0.6 to 1.9] percentage points vs 1.1 [95% CI, -0.2 to 2.5] percentage points and 0.7 [95% CI, -0.1 to 1.5] percentage points), and those with college educations compared with less than high school educations (2.5 [95% CI, 1.9 to 3.1] percentage points vs -0.6 [95% CI, -2.7 to 1.4] percentage points). Conclusions and Relevance: In this survey study, clinically significant US adult anxiety and depression increased less during 2020 than suggested by online surveys. However, this modest aggregate increase could mask more substantial increases in key population segments (eg, first responders) and might have become larger in 2021 and 2022.


Assuntos
COVID-19 , Adulto , Ansiedade/epidemiologia , COVID-19/epidemiologia , Depressão/epidemiologia , Feminino , Humanos , Masculino , Pandemias , Prevalência
18.
Exp Gerontol ; 164: 111828, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35508280

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is characterized by progressive memory loss and cognitive impairment. Our understanding of AD pathogenesis is limited and no effective disease-modifying treatment is available. Mitochondria are cytoplasmic organelles critical to the homeostatic regulation of glucose and energy in the cell. METHODS: Mitochondrial abnormalities are found early in the course of AD and dysfunctional mitochondria are involved in AD progression. The resulting respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species are highly damaging to neurons. Restoration of mitochondrial function may provide a novel therapeutic strategy for AD. RESULTS: This review discusses the specifics of mitochondrial fragmentation, imbalances in fission and fusion, and DNA damage seen in AD and the contribution of compromised mitochondrial activity to AD etiopathogenesis. It explores how an understanding of the processes underlying mitochondrial failure may lead to urgently needed treatment innovations. It considers individual mitochondrial proteins that have emerged as promising drug targets and evaluates neuroprotective agents that could improve the functional state of mitochondria in the setting of AD. CONCLUSIONS: There is great promise in exploring original approaches to preserving mitochondrial viability as a means to achieve breakthroughs in treating AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo
19.
JACC Basic Transl Sci ; 7(3): 265-293, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35411324

RESUMO

This virtual workshop was convened by the National Heart, Lung, and Blood Institute, in partnership with the Office of Strategic Coordination of the Office of the National Institutes of Health Director, and held September 2 to 3, 2020. The intent was to assemble a multidisciplinary group of experts in basic, translational, and clinical research in neuroscience and cardiopulmonary disorders to identify knowledge gaps, guide future research efforts, and foster multidisciplinary collaborations pertaining to autonomic neural mechanisms of cardiopulmonary regulation. The group critically evaluated the current state of knowledge of the roles that the autonomic nervous system plays in regulation of cardiopulmonary function in health and in pathophysiology of arrhythmias, heart failure, sleep and circadian dysfunction, and breathing disorders. Opportunities to leverage the Common Fund's SPARC (Stimulating Peripheral Activity to Relieve Conditions) program were characterized as related to nonpharmacologic neuromodulation and device-based therapies. Common themes discussed include knowledge gaps, research priorities, and approaches to develop novel predictive markers of autonomic dysfunction. Approaches to precisely target neural pathophysiological mechanisms to herald new therapies for arrhythmias, heart failure, sleep and circadian rhythm physiology, and breathing disorders were also detailed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...