Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HGG Adv ; : 100313, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38807368

RESUMO

Orofacial clefts (OFC) are common congenital birth defects with various etiologies, including genetic variants. Online Mendelian Inheritance in Man (OMIM) annotated several hundred genes involving OFC. Furthermore, several hundreds of de novo variants (DNVs) have been identified from OFC individuals. Some DNVs are related to known OFC genes or pathways, but there are still many DNVs whose relevance to OFC development is unknown. To explore novel gene functions and their cellular expression profiles, we focused on DNVs in genes that were not listed in OMIM. We collected 960 DNVs in 853 genes from published studies and curated these genes, based on the DNVs' deleteriousness, into 230 and 23 genes related to cleft lip with or without palate (CL/P) and cleft palate only (CPO), respectively. For comparison, we curated 178 CL/P and 277 CPO genes from OMIM. In CL/P, the pathways enriched in DNV and OMIM genes were significantly overlapped (p = 0.002). Single-cell RNA sequencing (scRNA-seq) analysis of mouse lip development revealed that both gene sets had abundant expression in the ectoderm (DNV genes: adjusted p = 0.032, OMIM genes: adjusted p < 0.0002), while only DNV genes were enriched in the endothelium (adjusted p = 0.032). Although we did not achieve significant findings using CPO gene sets, which was mainly due to the limited number of DNV genes, scRNA-seq analysis implicated various expression patterns among DNV and OMIM genes. Our results suggest combinatory pathway and scRNA-seq data analyses are helpful for contextualizing genes in OFC development.

2.
HGG Adv ; : 100312, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38796699

RESUMO

Orofacial clefts (OFC) are among the most common human congenital birth defects. Previous multiethnic studies have identified dozens of associated loci for both cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP). Although several nearby genes have been highlighted, the 'casual' variants are largely unknown. Here, we developed DeepFace, a convolutional neural network model, to assess the functional impact of variants by SNP activity difference (SAD) scores. The DeepFace model is trained with 204 epigenomic assays from crucial human embryonic craniofacial developmental stages of post-conception week (pcw) 4 to pcw 10. The Pearson Correlation Coefficient between the predicted and actual values for 12 epigenetic features achieved a median range of 0.50 to 0.83. Specifically, our model revealed that SNPs significantly associated with OFC tended to exhibit higher SAD scores across various variant categories compared to less-related groups, indicating a context-specific impact of OFC-related SNPs. Notably, we identified six SNPs with a significant linear relationship to SAD scores throughout developmental progression, suggesting that these SNPs could play a temporal regulatory role. Furthermore, our cell-type specificity analysis pinpointed the trophoblast cell as having the highest enrichment of risk signals associated with OFC. Overall, DeepFace can harness distal regulatory signals from extensive epigenomic assays, offering new perspectives for prioritizing OFC variants using contextualized functional genomic features. We expect DeepFace to be instrumental in accessing and predicting the regulatory roles of variants associated with OFC, and the model that can be extended to study other complex diseases or traits.

3.
J Hum Genet ; 69(2): 69-77, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38012394

RESUMO

SLC5A6 encodes the sodium-dependent multivitamin transporter, a transmembrane protein that uptakes biotin, pantothenic acid, and lipoic acid. Biallelic SLC5A6 variants cause sodium-dependent multivitamin transporter deficiency (SMVTD) and childhood-onset biotin-responsive peripheral motor neuropathy (COMNB), which both respond well to replacement therapy with the above three nutrients. SMVTD usually presents with various symptoms in multiple organs, such as gastrointestinal hemorrhage, brain atrophy, and global developmental delay, at birth or in infancy. Without nutrient replacement therapy, SMVTD can be lethal in early childhood. COMNB is clinically milder and has a later onset than SMVTD, at approximately 10 years of age. COMNB symptoms are mostly limited to peripheral motor neuropathy. Here we report three patients from one Japanese family harboring novel compound heterozygous missense variants in SLC5A6, namely NM_021095.4:c.[221C>T];[642G>C] p.[(Ser74Phe)];[(Gln214His)]. Both variants were predicted to be deleterious through multiple lines of evidence, including amino acid conservation, in silico predictions of pathogenicity, and protein structure considerations. Drosophila analysis also showed c.221C>T to be pathogenic. All three patients had congenital brain cysts on neonatal cranial imaging, but no other morphological abnormalities. They also had a mild motor developmental delay that almost completely resolved despite no treatment. In terms of severity, their phenotypes were intermediate between SMVTD and COMNB. From these findings we propose a new SLC5A6-related disorder, spontaneously remitting developmental delay with brain cysts (SRDDBC) whose phenotypic severity is between that of SMVTD and COMNB. Further clinical and genetic evidence is needed to support our suggestion.


Assuntos
Cistos , Simportadores , Pré-Escolar , Humanos , Recém-Nascido , Biotina/genética , Biotina/metabolismo , Fenótipo , Sódio/metabolismo , Simportadores/genética , Simportadores/metabolismo
4.
Asian J Endosc Surg ; 17(1): e13269, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058103

RESUMO

The COL4A1 (collagen Type 4 alpha1) pathogenic variant is associated with porencephaly and schizencephaly and accounts for approximately 20% of these patients. This gene variant leads to systemic microvasculopathy, which manifests as brain, ocular, renal, and muscular disorders. However, only a few patients with surgical interventions have been reported and the potential surgical risks are unknown. Here, we present the cases of two female patients between 7 and 8 years of age who were diagnosed with the COL4A1 variant and underwent laparoscopy-assisted percutaneous endoscopic gastrostomy (LAPEG) for oral dysphagia. Their primary brain lesions were caused by porencephaly and paralysis, which are caused by multiple cerebral hemorrhages and infarctions, and both patients had refractory epileptic complications. Although LAPEG was successfully performed in both patients without any intraoperative complications, one patient developed alveolar hemorrhage postoperatively and required mechanical ventilation. Thus, careful perioperative management of patients with the COL4A1 variant is important.


Assuntos
Laparoscopia , Porencefalia , Esquizencefalia , Humanos , Feminino , Gastrostomia/efeitos adversos , Esquizencefalia/genética , Laparoscopia/efeitos adversos , Complicações Intraoperatórias , Colágeno Tipo IV/genética
6.
Am J Med Genet B Neuropsychiatr Genet ; 192(3-4): 62-70, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36863698

RESUMO

Investigating functional, temporal, and cell-type expression features of mutations is important for understanding a complex disease. Here, we collected and analyzed common variants and de novo mutations (DNMs) in schizophrenia (SCZ). We collected 2,636 missense and loss-of-function (LoF) DNMs in 2,263 genes across 3,477 SCZ patients (SCZ-DNMs). We curated three gene lists: (a) SCZ-neuroGenes (159 genes), which are intolerant to LoF and missense DNMs and are neurologically important, (b) SCZ-moduleGenes (52 genes), which were derived from network analyses of SCZ-DNMs, and (c) SCZ-commonGenes (120 genes) from a recent GWAS as reference. To compare temporal gene expression, we used the BrainSpan dataset. We defined a fetal effect score (FES) to quantify the involvement of each gene in prenatal brain development. We further employed the specificity indexes (SIs) to evaluate cell-type expression specificity from single-cell expression data in cerebral cortices of humans and mice. Compared with SCZ-commonGenes, SCZ-neuroGenes and SCZ-moduleGenes were highly expressed in the prenatal stage, had higher FESs, and had higher SIs in fetal replicating cells and undifferentiated cell types. Our results suggested that gene expression patterns in specific cell types in early fetal stages might have impacts on the risk of SCZ during adulthood.


Assuntos
Encéfalo , Mutação , Esquizofrenia , Esquizofrenia/genética , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Animais , Camundongos , Feto/citologia , Feto/embriologia , Neurônios/metabolismo , Mutação com Perda de Função , Mutação de Sentido Incorreto , Humanos , Especificidade de Órgãos
7.
Brain Dev ; 45(4): 231-236, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631315

RESUMO

BACKGROUND: Heterozygous KCNQ2 variants cause benign familial neonatal seizures and early-onset epileptic encephalopathy in an autosomal dominant manner; the latter is called KCNQ2 encephalopathy. No case of KCNQ2 encephalopathy with arthrogryposis multiplex congenita has been reported. Furthermore, early-onset scoliosis and opisthotonus have not been documented as characteristics of KCNQ2 encephalopathy. CASE REPORT: A male infant born with scoliosis and arthrogryposis multiplex congenita developed intractable epilepsy on the second day of life. At 4 months of age, he developed opisthotonus. The opisthotonus was refractory to medication in the beginning, and it spontaneously disappeared at 8 months of age. Whole-exome sequencing revealed a novel de novo heterozygous variant in KCNQ2, NM_172107.4:c.839A > C, p.(Tyr280Ser). CONCLUSIONS: Early-onset scoliosis, arthrogryposis multiplex congenita, and opisthotonus may be related to KCNQ2 encephalopathy.


Assuntos
Artrogripose , Encefalopatias , Distonia , Escoliose , Lactente , Recém-Nascido , Humanos , Masculino , Artrogripose/complicações , Artrogripose/genética , Escoliose/complicações , Escoliose/genética , Mutação/genética , Canal de Potássio KCNQ2/genética , Encefalopatias/complicações , Encefalopatias/genética
8.
Sci Rep ; 13(1): 975, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653413

RESUMO

The Drosophila behavior/human splicing protein family is involved in numerous steps of gene regulation. In humans, this family consists of three proteins: SFPQ, PSPC1, and NONO. Hemizygous loss-of-function (LoF) variants in NONO cause a developmental delay with several complications (e.g., distinctive facial features, cardiac symptoms, and skeletal symptoms) in an X-linked recessive manner. Most of the reported variants have been LoF variants, and two missense variants have been reported as likely deleterious but with no functional validation. We report three individuals from two families harboring an identical missense variant that is located in the nuclear localization signal, NONO: NM_001145408.2:c.1375C > G p.(Pro459Ala). All of them were male and the variant was inherited from their asymptomatic mothers. Individual 1 was diagnosed with developmental delay and cardiac phenotypes (ventricular tachycardia and dilated cardiomyopathy), which overlapped with the features of reported individuals having NONO LoF variants. Individuals 2 and 3 were monozygotic twins. Unlike in Individual 1, developmental delay with autistic features was the only symptom found in them. A fly experiment and cell localization experiment showed that the NONO variant impaired its proper intranuclear localization, leading to mild LoF. Our findings suggest that deleterious NONO missense variants should be taken into consideration when whole-exome sequencing is performed on male individuals with developmental delay with or without cardiac symptoms.


Assuntos
Cardiomiopatia Dilatada , Proteínas de Ligação a DNA , Coração , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA , Feminino , Humanos , Masculino , Cardiomiopatia Dilatada/genética , Proteínas de Ligação a DNA/genética , Fenótipo , Proteínas de Ligação a RNA/genética
9.
Genome Med ; 14(1): 40, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35468861

RESUMO

BACKGROUND: Previous large-scale studies of de novo variants identified a number of genes associated with neurodevelopmental disorders (NDDs); however, it was also predicted that many NDD-associated genes await discovery. Such genes can be discovered by integrating copy number variants (CNVs), which have not been fully considered in previous studies, and increasing the sample size. METHODS: We first constructed a model estimating the rates of de novo CNVs per gene from several factors such as gene length and number of exons. Second, we compiled a comprehensive list of de novo single-nucleotide variants (SNVs) in 41,165 individuals and de novo CNVs in 3675 individuals with NDDs by aggregating our own and publicly available datasets, including denovo-db and the Deciphering Developmental Disorders study data. Third, summing up the de novo CNV rates that we estimated and SNV rates previously established, gene-based enrichment of de novo deleterious SNVs and CNVs were assessed in the 41,165 cases. Significantly enriched genes were further prioritized according to their similarity to known NDD genes using a deep learning model that considers functional characteristics (e.g., gene ontology and expression patterns). RESULTS: We identified a total of 380 genes achieving statistical significance (5% false discovery rate), including 31 genes affected by de novo CNVs. Of the 380 genes, 52 have not previously been reported as NDD genes, and the data of de novo CNVs contributed to the significance of three genes (GLTSCR1, MARK2, and UBR3). Among the 52 genes, we reasonably excluded 18 genes [a number almost identical to the theoretically expected false positives (i.e., 380 × 0.05 = 19)] given their constraints against deleterious variants and extracted 34 "plausible" candidate genes. Their validity as NDD genes was consistently supported by their similarity in function and gene expression patterns to known NDD genes. Quantifying the overall similarity using deep learning, we identified 11 high-confidence (> 90% true-positive probabilities) candidate genes: HDAC2, SUPT16H, HECTD4, CHD5, XPO1, GSK3B, NLGN2, ADGRB1, CTR9, BRD3, and MARK2. CONCLUSIONS: We identified dozens of new candidates for NDD genes. Both the methods and the resources developed here will contribute to the further identification of novel NDD-associated genes.


Assuntos
Variações do Número de Cópias de DNA , Transtornos do Neurodesenvolvimento , Proteínas de Ciclo Celular/genética , DNA Helicases/genética , Éxons , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Nucleotídeos , Fatores de Transcrição/genética
10.
Clin Genet ; 102(1): 3-11, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35342932

RESUMO

Kyphomelic dysplasia is a heterogeneous group of skeletal dysplasias characterized by severe bowing of the limbs associated with other variable findings, such as narrow thorax and abnormal facies. We searched for the genetic etiology of this disorder. Four individuals diagnosed with kyphomelic dysplasia were enrolled. We performed whole-exome sequencing and evaluated the pathogenicity of the identified variants. All individuals had de novo heterozygous variants in KIF5B encoding kinesin-1 heavy chain: two with c.272A>G:p.(Lys91Arg), one with c.584C>A:p.(Thr195Lys), and the other with c.701G>T:p.(Gly234Val). All variants involved conserved amino acids in or close to the ATPase activity-related motifs in the catalytic motor domain of the KIF5B protein. All individuals had sharp angulation of the femora and humeri, distinctive facial features, and neonatal respiratory distress. Short stature was observed in three individuals. Three developed postnatal osteoporosis with subsequent fractures, two showed brachycephaly, and two were diagnosed with optic atrophy. Our findings suggest that heterozygous KIF5B deleterious variants cause a specific form of kyphomelic dysplasia. Furthermore, alterations in kinesins cause various symptoms known as kinesinopathies, and our findings also extend the phenotypic spectrum of kinesinopathies.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Nanismo , Cinesinas , Osteocondrodisplasias , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Nanismo/diagnóstico , Nanismo/genética , Humanos , Recém-Nascido , Cinesinas/genética , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/genética
11.
J Hum Genet ; 67(1): 1-7, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34230591

RESUMO

Heterozygous variants in CLTC, which encode the clathrin heavy chain protein, cause neurodevelopmental delay of varying severity, and often accompanied by dysmorphic features, seizures, hypotonia, and ataxia. To date, 28 affected individuals with CLTC variants have been reported, although their phenotypes have not been fully elucidated. Here, we report three novel de novo CLTC (NM_001288653.1) variants in three individuals with previously unreported clinical symptoms: c.3662_3664del:p.(Leu1221del) in individual 1, c.2878T>C:p.(Trp960Arg) in individual 2, and c.2430+1G>T:p.(Glu769_Lys810del) in individual 3. Consistent with previous reports, individuals with missense or small in-frame variants were more severely affected. Unreported symptoms included a brain defect (cystic lesions along the lateral ventricles of the brain in individuals 1 and 3), kidney findings (high-echogenic kidneys in individual 1 and agenesis of the left kidney and right vesicoureteral reflux in individual 3), respiratory abnormality (recurrent pneumonia in individual 1), and abnormal hematological findings (anemia in individual 1 and pancytopenia in individual 3). Of note, individual 1 even exhibited prenatal abnormality (fetal growth restriction, cystic brain lesions, high-echogenic kidneys, and a heart defect), suggesting that CLTC variants should be considered when abnormal prenatal findings in multiple organs are detected.


Assuntos
Encéfalo , Cadeias Pesadas de Clatrina/genética , Variação Genética , Rim , Fenótipo , Alelos , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Mutação
12.
Brain Dev ; 43(10): 1033-1038, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34281745

RESUMO

BACKGROUND: The collagen type IV alpha 1 chain (COL4A1) gene on 13q34 encodes one chain of collagen. COL4A1 mutations have been identified as the cause of a group of multisystemic conditions in humans, including the brain, eyes, kidneys, muscles, and other organs at any age. Brain imaging shows a wide spectrum of abnormalities, including porencephaly, schizencephaly, polymicrogyria focal cortical dysplasia, periventricular leukoencephalopathy, ventricular dysmorphisms, and multiple brain calcifications. However, there are no reports in the literature showing progressive radiological findings in consecutive follow-up scans. Herein, we report three cases of COL4A1 mutations with porencephaly from gestation to five years of age or longer, and describe their clinical and brain imaging findings. CASE REPORTS: We retrospectively reviewed the clinical symptoms and radiological findings, including brain magnetic resonance imaging (MRI) and computed tomography (CT), in three female patients with COL4A1 mutations. Their mutations were c.4843G>A (p.Glu1615Lys), c.1835G>A (p.Gly612Asp), and c.3556+1G>T respectively. All the three cases represented porencephaly in the fetal period; severe hemolytic anemia in the neonatal period; and drug-resistant epilepsy, global developmental delay, and spastic quadriplegia in their childhood. RESULTS: Brain MRI and CT showed progressive white matter atrophy from gestation to five-year follow-up or later. Minor cerebral hemorrhage without symptoms occasionally occurred in one patient. Despite brain changes, the clinical picture was stable during early childhood. CONCLUSIONS: COL4A1 mutations may cause progressive cerebral atrophy beyond early childhood.


Assuntos
Colágeno Tipo IV/genética , Deficiências do Desenvolvimento/genética , Epilepsia Resistente a Medicamentos/genética , Quadriplegia/genética , Criança , Feminino , Humanos , Mutação
13.
Hum Genome Var ; 8(1): 20, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031356

RESUMO

We describe two patients with NSD1 deletion, who presented with early-onset, or recurrent cerebrovascular diseases (CVDs). A 39-year-old female showed developmental delay and abnormal gait in infancy, and developed slowly-progressive intellectual disability and movement disorders. Brain imaging suggested recurrent parenchymal hemorrhages. A 6-year-old male had tremor as a neonate and brain imaging revealed subdural hematoma and brain contusion. This report suggests possible involvement of CVDs associated with NSD1 deletion.

14.
Am J Hum Genet ; 108(2): 346-356, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33513338

RESUMO

Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression, and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Cromatina/metabolismo , Feminino , Estudos de Associação Genética , Haploinsuficiência , Humanos , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/química , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Modelos Moleculares , Mutação de Sentido Incorreto , Ligação Proteica , Domínios Proteicos , Transcrição Gênica
15.
J Med Genet ; 58(8): 505-513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32732225

RESUMO

BACKGROUND: Variants in the type IV collagen gene (COL4A1/2) cause early-onset cerebrovascular diseases. Most individuals are diagnosed postnatally, and the prenatal features of individuals with COL4A1/2 variants remain unclear. METHODS: We examined COL4A1/2 in 218 individuals with suspected COL4A1/2-related brain defects. Among those arising from COL4A1/2 variants, we focused on individuals showing prenatal abnormal ultrasound findings and validated their prenatal and postnatal clinical features in detail. RESULTS: Pathogenic COL4A1/2 variants were detected in 56 individuals (n=56/218, 25.7%) showing porencephaly (n=29), schizencephaly (n=12) and others (n=15). Thirty-four variants occurred de novo (n=34/56, 60.7%). Foetal information was available in 47 of 56 individuals, 32 of whom (n=32/47, 68.1%) had one or more foetal abnormalities. The median gestational age at the detection of initial prenatal abnormal features was 31 weeks of gestation. Only 14 individuals had specific prenatal findings that were strongly suggestive of features associated with COL4A1/2 variants. Foetal ventriculomegaly was the most common initial feature (n=20/32, 62.5%). Posterior fossa abnormalities, including Dandy-Walker malformation, were observed prenatally in four individuals. Regarding extrabrain features, foetal growth restriction was present in 16 individuals, including eight individuals with comorbid ventriculomegaly. CONCLUSIONS: Prenatal observation of ventriculomegaly with comorbid foetal growth restriction should prompt a thorough ultrasound examination and COL4A1/2 gene testing should be considered when pathogenic variants are strongly suspected.


Assuntos
Colágeno Tipo IV/genética , Mutação/genética , Síndrome de Dandy-Walker/genética , Feminino , Humanos , Masculino , Gravidez , Ultrassonografia Pré-Natal/métodos
16.
Hum Mutat ; 42(1): 66-76, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131106

RESUMO

We report heterozygous CELF2 (NM_006561.3) variants in five unrelated individuals: Individuals 1-4 exhibited developmental and epileptic encephalopathy (DEE) and Individual 5 had intellectual disability and autistic features. CELF2 encodes a nucleocytoplasmic shuttling RNA-binding protein that has multiple roles in RNA processing and is involved in the embryonic development of the central nervous system and heart. Whole-exome sequencing identified the following CELF2 variants: two missense variants [c.1558C>T:p.(Pro520Ser) in unrelated Individuals 1 and 2, and c.1516C>G:p.(Arg506Gly) in Individual 3], one frameshift variant in Individual 4 that removed the last amino acid of CELF2 c.1562dup:p.(Tyr521Ter), possibly resulting in escape from nonsense-mediated mRNA decay (NMD), and one canonical splice site variant, c.272-1G>C in Individual 5, also probably leading to NMD. The identified variants in Individuals 1, 2, 4, and 5 were de novo, while the variant in Individual 3 was inherited from her mosaic mother. Notably, all identified variants, except for c.272-1G>C, were clustered within 20 amino acid residues of the C-terminus, which might be a nuclear localization signal. We demonstrated the extranuclear mislocalization of mutant CELF2 protein in cells transfected with mutant CELF2 complementary DNA plasmids. Our findings indicate that CELF2 variants that disrupt its nuclear localization are associated with DEE.


Assuntos
Proteínas CELF , Epilepsia , Deficiência Intelectual , Proteínas do Tecido Nervoso , Proteínas CELF/genética , Epilepsia/genética , Feminino , Heterozigoto , Humanos , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/genética , Sinais de Localização Nuclear/genética , Proteínas de Ligação a RNA/genética
17.
Hum Mutat ; 42(1): 50-65, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131168

RESUMO

Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.


Assuntos
Variações do Número de Cópias de DNA , Exoma , Algoritmos , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Reprodutibilidade dos Testes , Sequenciamento do Exoma
18.
Epilepsia Open ; 5(3): 442-450, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32913952

RESUMO

OBJECTIVE: To elucidate the genetic background and genotype-phenotype correlations for epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy (MAE) or Doose syndrome. METHODS: We collected clinical information and blood samples from 29 patients with MAE. We performed whole-exome sequencing for all except one MAE case in whom custom capture sequencing identified a variant. RESULTS: We newly identified four variants: SLC6A1 and HNRNPU missense variants and microdeletions at 2q24.2 involving SCN1A and Xp22.31 involving STS. Febrile seizures preceded epileptic or afebrile seizures in four patients, of which two patients had gene variants. Myoclonic-atonic seizures occurred at onset in four patients, of which two had variants, and during the course of disease in three patients. Variants were more commonly identified in patients with a developmental delay or intellectual disability (DD/ID), but genetic status was not associated with the severity of DD/ID. Attention-deficit/hyperactivity disorder and autistic spectrum disorder were less frequently observed in patients with variants than in those with unknown etiology. SIGNIFICANCE: MAE patients had genetic heterogeneity, and HNRNPU and STS emerged as possible candidate causative genes. Febrile seizures prior to epileptic seizures and myoclonic-atonic seizure at onset indicate a genetic predisposition to MAE. Comorbid conditions were not related to genetic predisposition to MAE.

19.
Brain Dev ; 42(8): 612-616, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32532640

RESUMO

AIM: To describe beneficial effects of callosotomy on KCNQ2-related intractable epilepsy. CASE REPORT: Our patient was a 10-year-old girl who had developed epilepsy during the neonatal period, accompanied by a suppression-burst pattern on the electroencephalography (EEG). The patient showed profound psychomotor developmental delay since early infancy. Daily seizures of versive posturing and ocular deviation were transiently controlled by carbamazepine and valproate at the age of 1 year; however, the seizures gradually increased to up to 50 times per day. Ictal EEG and positron emission tomography revealed an epileptic focus in the left frontal lobe at age 5 years. Total callosotomy resulted in marked reduction of epileptic seizures thereafter, as well as improved responses to external auditory and visual stimuli. Whole exome sequencing at age 9 identified a de novo missense variant in KCNQ2 (NM_172107.3:c.563A > C:p.(Gln188Pro)). CONCLUSION: This case supports that epilepsy surgery could benefit children with epileptic encephalopathy, even with the etiology of channelopathy.


Assuntos
Corpo Caloso/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Canal de Potássio KCNQ2/genética , Carbamazepina/uso terapêutico , Criança , Epilepsia Resistente a Medicamentos/genética , Eletroencefalografia , Feminino , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico , Mutação de Sentido Incorreto , Ácido Valproico/uso terapêutico
20.
Nat Commun ; 10(1): 2506, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31175295

RESUMO

Although there are many known Mendelian genes linked to epileptic or developmental and epileptic encephalopathy (EE/DEE), its genetic architecture is not fully explained. Here, we address this incompleteness by analyzing exomes of 743 EE/DEE cases and 2366 controls. We observe that damaging ultra-rare variants (dURVs) unique to an individual are significantly overrepresented in EE/DEE, both in known EE/DEE genes and the other non-EE/DEE genes. Importantly, enrichment of dURVs in non-EE/DEE genes is significant, even in the subset of cases with diagnostic dURVs (P = 0.000215), suggesting oligogenic contribution of non-EE/DEE gene dURVs. Gene-based analysis identifies exome-wide significant (P = 2.04 × 10-6) enrichment of damaging de novo mutations in NF1, a gene primarily linked to neurofibromatosis, in infantile spasm. Together with accumulating evidence for roles of oligogenic or modifier variants in severe neurodevelopmental disorders, our results highlight genetic complexity in EE/DEE, and indicate that EE/DEE is not an aggregate of simple Mendelian disorders.


Assuntos
Variação Genética , Espasmos Infantis/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Povo Asiático/genética , Estudos de Casos e Controles , DNA (Citosina-5-)-Metiltransferases/genética , Epilepsias Mioclônicas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Lactente , Japão , Síndrome de Lennox-Gastaut/genética , Modelos Logísticos , Mutação , Neurofibromina 1/genética , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal , Canais de Cátion TRPM/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...