Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Aging Cell ; : e14186, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761001

RESUMO

Skin aging is the result of two types of aging, "intrinsic aging" an inevitable consequence of physiologic and genetically determined changes and "extrinsic aging," which is dependent on external factors such as exposure to sunlight, smoking, and dietary habits. UVB causes skin injury through the generation of free radicals and other oxidative byproducts, also contributing to DNA damage. Appearance and accumulation of senescent cells in the skin are considered one of the hallmarks of aging in this tissue. Mitochondria play an important role for the development of cellular senescence, in particular stress-induced senescence of human cells. However, many aspects of mitochondrial physiology relevant to cellular senescence and extrinsic skin aging remain to be unraveled. Here, we demonstrate that mitochondria damaged by UVB irradiation of human dermal fibroblasts (HDF) are eliminated by NIX-dependent mitophagy and that this process is important for cell survival under these conditions. Additionally, UVB-irradiation of human dermal fibroblasts (HDF) induces the shedding of extracellular vesicles (EVs), and this process is significantly enhanced in UVB-irradiated NIX-depleted cells. Our findings establish NIX as the main mitophagy receptor in the process of UVB-induced senescence and suggest the release of EVs as an alternative mechanism of mitochondrial quality control in HDF.

2.
Biomedicines ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38540205

RESUMO

Cellular senescence, a state of irreversible growth arrest, is implicated in various age-related pathologies, including skin aging. In this study, we investigated the role of CLCA2, a calcium-activated chloride channel accessory protein, in cellular senescence and its implications for skin aging. Utilizing UVB and Nutlin3a-induced senescence models, we observed the upregulation of CLCA2 at both transcriptomic and proteomic levels, suggesting its involvement in senescence pathways. Further analysis revealed that the depletion of CLCA2 led to accelerated senescence onset, characterized by classic senescence markers and a unique secretome profile. In 3D skin equivalent models, SEs constructed with CLCA2 knockdown fibroblasts exhibited features reminiscent of aged skin, underscoring the importance of CLCA2 in maintaining skin homeostasis. Our findings highlight CLCA2 as a novel regulator of cellular senescence and its potential implications for skin aging mechanisms.

3.
Aging Cell ; 23(4): e14086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217101

RESUMO

Skin aging is a complex process influenced by intrinsic factors and environmental stressors, including ultraviolet (UV) radiation and air pollution, among others. In this study, we investigated the effects of UVA and UVB radiation, combined with urban particulate matter (UPM), on human dermal fibroblasts (HDF). We show here that treatment of HDF with a subcytotoxic dose of UVA/UVB results in a series of events leading to mitochondrial dysfunction, increased ROS levels, and DNA damage. These effects are known to trigger either cellular senescence or cell death, depending on the cells' ability to clear damage by activating autophagy. Whereas UPM treatment in isolation did not affect proliferation or survival of HDF, of note, simultaneous UPM treatment of UV-irradiated cells selectively inhibited autophagic flux, thereby changing cell fate of a fraction of the cell population from senescence to apoptotic cell death. Our findings highlight the synergistic effects of UV radiation and UPM on skin aging, emphasizing the need to consider these factors in assessing the impact of environmental stressors on human health and opening opportunities for developing comprehensive approaches to protect and preserve skin integrity in the face of growing environmental challenges.


Assuntos
Envelhecimento da Pele , Raios Ultravioleta , Humanos , Células Cultivadas , Pele/metabolismo , Senescência Celular , Fibroblastos/metabolismo , Autofagia
4.
Aging Cell ; 22(1): e13752, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547021

RESUMO

Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine also known as a mitokine; however, its role in mitochondrial homeostasis and cellular senescence remained elusive. We show here that knocking down GDF15 expression in human dermal fibroblasts induced mitochondrial dysfunction and premature senescence, associated with a distinct senescence-associated secretory phenotype. Fibroblast-specific loss of GDF15 expression in a model of 3D reconstructed human skin induced epidermal thinning, a hallmark of skin aging. Our results suggest GDF15 to play a so far undisclosed role in mitochondrial homeostasis to delay both the onset of cellular senescence and the appearance of age-related changes in a 3D human skin model.


Assuntos
Fator 15 de Diferenciação de Crescimento , Pele , Humanos , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Pele/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Senescência Celular/genética
5.
Cells ; 11(14)2022 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-35883663

RESUMO

The human skin is exposed daily to different environmental factors such as air pollutants and ultraviolet (UV) light. Air pollution is considered a harmful environmental risk to human skin and is known to promote aging and inflammation of this tissue, leading to the onset of skin disorders and to the appearance of wrinkles and pigmentation issues. Besides this, components of air pollution can interact synergistically with ultraviolet light and increase the impact of damage to the skin. However, little is known about the modulation of air pollution on cellular senescence in skin cells and how this can contribute to skin aging. In this review, we are summarizing the current state of knowledge about air pollution components, their involvement in the processes of cellular senescence and skin aging, as well as the current therapeutic and cosmetic interventions proposed to prevent or mitigate the effects of air pollution in the skin.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Envelhecimento da Pele , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Senescência Celular , Humanos , Raios Ultravioleta
6.
Cells ; 11(12)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35741106

RESUMO

Organismal aging is normally accompanied by an increase in the number of senescent cells, growth-arrested metabolic active cells that affect normal tissue function. These cells present a series of characteristics that have been studied over the last few decades. The damage in cellular organelles disbalances the cellular homeostatic processes, altering the behavior of these cells. Lysosomal dysfunction is emerging as an important factor that could regulate the production of inflammatory molecules, metabolic cellular state, or mitochondrial function.


Assuntos
Senescência Celular , Lisossomos , Proliferação de Células , Senescência Celular/fisiologia , Lisossomos/metabolismo , Mitocôndrias/metabolismo
7.
J Invest Dermatol ; 142(10): 2623-2634.e12, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35341734

RESUMO

Previous work has shown increased expression of genes related to oxidative stress in nonlesional atopic dermatitis (ADNL) skin. Although mitochondria are key regulators of ROS production, their function in AD has never been investigated. Energy metabolism and the oxidative stress response were studied in keratinocytes (KCs) from patients with ADNL or healthy controls. Moreover, ADNL human epidermal equivalents were treated with tigecycline or MitoQ. We found that pyruvate and glucose were used as energy substrates by ADNL KCs. Increased mitochondrial oxidation of (very) long-chain fatty acids, associated with enhanced complexes I and II activities, was observed in ADNL KCs. Metabolomic analysis revealed increased tricarboxylic acid cycle turnover. Increased aerobic metabolism generated oxidative stress in ADNL KCs. ADNL human epidermal equivalents displayed increased mitochondrial function and an enhanced oxidative stress response compared with controls. Treatment of ADNL human epidermal equivalents with tigecycline or MitoQ largely corrected the AD profile, including high p-65 NF-κB, abnormal lamellar bodies, and cellular damage. Furthermore, we found that glycolysis supports but does not supersede mitochondrial metabolism in ADNL KCs. Thus, aerobic metabolism predominates in ADNL but leads to oxidative stress. Therefore, mitochondria could be a reservoir of potential therapeutic targets in atopic dermatitis.


Assuntos
Dermatite Atópica , Dermatite Atópica/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Ácido Pirúvico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tigeciclina/metabolismo
8.
BMC Genomics ; 23(1): 25, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983389

RESUMO

BACKGROUND: In the nematode Caenorhabditis elegans, longevity in response to germline ablation, but not in response to reduced insulin/IGF1-like signaling, is strongly dependent on the conserved protein kinase minibrain-related kinase 1 (MBK-1). In humans, the MBK-1 ortholog DYRK1A is associated with a variety of disorders, most prominently with neurological defects observed in Down syndrome. To better understand mbk-1's physiological roles and their dependence on genetic background, we analyzed the influence of mbk-1 loss on the transcriptomes of wildtype and long-lived, germline-deficient or insulin-receptor defective, C. elegans strains by RNA-sequencing. RESULTS: mbk-1 loss elicited global changes in transcription that were less pronounced in insulin-receptor mutant than in germline-deficient or wildtype C. elegans. Irrespective of genetic background, mbk-1 regulated genes were enriched for functions in biological processes related to organic acid metabolism and pathogen defense. qPCR-studies confirmed mbk-1 dependent induction of all three C. elegans Δ9-fatty acid desaturases, fat-5, fat-6 and fat-7, in wildtype, germline-deficient and insulin-receptor mutant strains. Conversely, mbk-1 dependent expression patterns of selected pathogen resistance genes, including asp-12, dod-24 and drd-50, differed across the genetic backgrounds examined. Finally, cth-1 and cysl-2, two genes which connect pathogen resistance to the metabolism of the gaseous messenger and lifespan regulator hydrogen sulfide (H2S), were commonly suppressed by mbk-1 loss only in wildtype and germline-deficient, but not in insulin-receptor mutant C. elegans. CONCLUSION: Our work reveals previously unknown roles of C. elegans mbk-1 in the regulation of fatty acid desaturase- and H2S metabolic-genes. These roles are only partially dependent on genetic background. Considering the particular importance of fatty acid desaturation and H2S for longevity of germline-deficient C. elegans, we propose that these processes at least in part account for the previous observation that mbk-1 preferentially regulates lifespan in these worms.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Longevidade , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ácidos Graxos Dessaturases/genética , Células Germinativas , Longevidade/genética
9.
Cells ; 10(8)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440809

RESUMO

Mitochondria play a key role in metabolic transitions involved in the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), but the underlying molecular mechanisms remain largely unexplored. To obtain new insight into the mechanisms of cellular reprogramming, we studied the role of FAH domain-containing protein 1 (FAHD1) in the reprogramming of murine embryonic fibroblasts (MEFs) into iPSCs and their subsequent differentiation into neuronal cells. MEFs from wild type (WT) and Fahd1-knock-out (KO) mice were reprogrammed into iPSCs and characterized for alterations in metabolic parameters and the expression of marker genes indicating mitochondrial biogenesis. Fahd1-KO MEFs showed a higher reprogramming efficiency accompanied by a significant increase in glycolytic activity as compared to WT. We also observed a strong increase of mitochondrial DNA copy number and expression of biogenesis marker genes in Fahd1-KO iPSCs relative to WT. Neuronal differentiation of iPSCs was accompanied by increased expression of mitochondrial biogenesis genes in both WT and Fahd1-KO neurons with higher expression in Fahd1-KO neurons. Together these observations establish a role of FAHD1 as a potential negative regulator of reprogramming and add additional insight into mechanisms by which FAHD1 modulates mitochondrial functions.


Assuntos
Reprogramação Celular , Glicólise/fisiologia , Hidrolases/genética , Animais , Diferenciação Celular , Linhagem Celular , DNA Mitocondrial/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Hidrolases/deficiência , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fosforilação Oxidativa
10.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443596

RESUMO

FAH domain containing protein 1 (FAHD1) acts as oxaloacetate decarboxylase in mitochondria, contributing to the regulation of the tricarboxylic acid cycle. Guided by a high-resolution X-ray structure of FAHD1 liganded by oxalate, the enzymatic mechanism of substrate processing is analyzed in detail. Taking the chemical features of the FAHD1 substrate oxaloacetate into account, the potential inhibitor structures are deduced. The synthesis of drug-like scaffolds afforded first-generation FAHD1-inhibitors with activities in the low micromolar IC50 range. The investigations disclosed structures competing with the substrate for binding to the metal cofactor, as well as scaffolds, which may have a novel binding mode to FAHD1.


Assuntos
Inibidores Enzimáticos/farmacologia , Hidrolases/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Humanos , Hidrolases/química , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Conformação Proteica
11.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804275

RESUMO

Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Hidrolases/genética , Dormência de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Humanos , Longevidade/genética , Oxirredução , Sementes/genética , Sementes/crescimento & desenvolvimento
12.
Geroscience ; 43(3): 1317-1329, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33599920

RESUMO

Phenotype-specific omic expression patterns in people with frailty could provide invaluable insight into the underlying multi-systemic pathological processes and targets for intervention. Classical approaches to frailty have not considered the potential for different frailty phenotypes. We characterized associations between frailty (with/without disability) and sets of omic factors (genomic, proteomic, and metabolomic) plus markers measured in routine geriatric care. This study was a prevalent case control using stored biospecimens (urine, whole blood, cells, plasma, and serum) from 1522 individuals (identified as robust (R), pre-frail (P), or frail (F)] from the Toledo Study of Healthy Aging (R=178/P=184/F=109), 3 City Bordeaux (111/269/100), Aging Multidisciplinary Investigation (157/79/54) and InCHIANTI (106/98/77) cohorts. The analysis included over 35,000 omic and routine laboratory variables from robust and frail or pre-frail (with/without disability) individuals using a machine learning framework. We identified three protective biomarkers, vitamin D3 (OR: 0.81 [95% CI: 0.68-0.98]), lutein zeaxanthin (OR: 0.82 [95% CI: 0.70-0.97]), and miRNA125b-5p (OR: 0.73, [95% CI: 0.56-0.97]) and one risk biomarker, cardiac troponin T (OR: 1.25 [95% CI: 1.23-1.27]). Excluding individuals with a disability, one protective biomarker was identified, miR125b-5p (OR: 0.85, [95% CI: 0.81-0.88]). Three risks of frailty biomarkers were detected: pro-BNP (OR: 1.47 [95% CI: 1.27-1.7]), cardiac troponin T (OR: 1.29 [95% CI: 1.21-1.38]), and sRAGE (OR: 1.26 [95% CI: 1.01-1.57]). Three key frailty biomarkers demonstrated a statistical association with frailty (oxidative stress, vitamin D, and cardiovascular system) with relationship patterns differing depending on the presence or absence of a disability.


Assuntos
Fragilidade , Idoso , Estudos de Casos e Controles , Idoso Fragilizado , Fragilidade/diagnóstico , Humanos , Aprendizado de Máquina , Proteômica
13.
Nucleic Acids Res ; 49(3): 1517-1531, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33450006

RESUMO

The maternal mode of mitochondrial DNA (mtDNA) inheritance is central to human genetics. Recently, evidence for bi-parental inheritance of mtDNA was claimed for individuals of three pedigrees that suffered mitochondrial disorders. We sequenced mtDNA using both direct Sanger and Massively Parallel Sequencing in several tissues of eleven maternally related and other affiliated healthy individuals of a family pedigree and observed mixed mitotypes in eight individuals. Cells without nuclear DNA, i.e. thrombocytes and hair shafts, only showed the mitotype of haplogroup (hg) V. Skin biopsies were prepared to generate ρ° cells void of mtDNA, sequencing of which resulted in a hg U4c1 mitotype. The position of the Mega-NUMT sequence was determined by fluorescence in situ hybridization and two different quantitative PCR assays were used to determine the number of contributing mtDNA copies. Thus, evidence for the presence of repetitive, full mitogenome Mega-NUMTs matching haplogroup U4c1 in various tissues of eight maternally related individuals was provided. Multi-copy Mega-NUMTs mimic mixtures of mtDNA that cannot be experimentally avoided and thus may appear in diverse fields of mtDNA research and diagnostics. We demonstrate that hair shaft mtDNA sequencing provides a simple but reliable approach to exclude NUMTs as source of misleading results.


Assuntos
DNA Mitocondrial , Genoma Humano , Núcleo Celular/genética , Variações do Número de Cópias de DNA , Feminino , Humanos , Masculino , Linhagem , Análise de Sequência de DNA
14.
FEBS J ; 288(12): 3834-3854, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33200494

RESUMO

Cellular senescence, a stable cell division arrest caused by severe damage and stress, is a hallmark of aging in vertebrates including humans. With progressing age, senescent cells accumulate in a variety of mammalian tissues, where they contribute to tissue aging, identifying cellular senescence as a major target to delay or prevent aging. There is an increasing demand for the discovery of new classes of small molecules that would either avoid or postpone cellular senescence by selectively eliminating senescent cells from the body (i.e., 'senolytics') or inactivating/switching damage-inducing properties of senescent cells (i.e., 'senostatics/senomorphics'), such as the senescence-associated secretory phenotype. Whereas compounds with senolytic or senostatic activity have already been described, their efficacy and specificity has not been fully established for clinical use yet. Here, we review mechanisms of senescence that are related to mitochondria and their interorganelle communication, and the involvement of proteostasis networks and metabolic control in the senescent phenotype. These cellular functions are associated with cellular senescence in in vitro and in vivo models but have not been fully exploited for the search of new compounds to counteract senescence yet. Therefore, we explore possibilities to target these mechanisms as new opportunities to selectively eliminate and/or disable senescent cells with the aim of tissue rejuvenation. We assume that this research will provide new compounds from the chemical space which act as mimetics of caloric restriction, modulators of calcium signaling and mitochondrial physiology, or as proteostasis optimizers, bearing the potential to counteract cellular senescence, thereby allowing healthy aging.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Mitocôndrias/genética , Mitofagia/genética , Rejuvenescimento/fisiologia , Envelhecimento/metabolismo , Animais , Sinalização do Cálcio , Restrição Calórica/métodos , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosforilação Oxidativa , Proteostase/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
15.
J Invest Dermatol ; 141(4S): 993-1006.e15, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33333126

RESUMO

During aging, skin accumulates senescent cells. The transient presence of senescent cells, followed by their clearance by the immune system, is important in tissue repair and homeostasis. The persistence of senescent cells that evade clearance contributes to the age-related deterioration of the skin. The senescence-associated secretory phenotype of these cells contains immunomodulatory molecules that facilitate clearance but also promote chronic damage. Here, we investigated the epilipidome-the oxidative modifications of phospholipids-of senescent dermal fibroblasts, because these molecules are among the bioactive lipids that were recently identified as senescence-associated secretory phenotype factors. Using replicative- and stress- induced senescence protocols, we identified lysophosphatidylcholines as universally elevated in senescent fibroblasts, whereas other oxidized lipids displayed a pattern that was characteristic for the used senescence protocol. When we tested the lysophosphatidylcholines for senescence-associated secretory phenotype activity, we found that they elicit chemokine release in nonsenescent fibroblasts but also interfere with toll-like receptor 2 and 6/CD36 signaling and phagocytic capacity in macrophages. Using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry imaging, we localized two lysophosphatidylcholine species in aged skin. This suggests that lysophospholipids may facilitate immune evasion and low-grade chronic inflammation in skin aging.


Assuntos
Senescência Celular/imunologia , Derme/patologia , Fibroblastos/patologia , Lisofosfatidilcolinas/metabolismo , Envelhecimento da Pele/imunologia , Idoso , Células Cultivadas , Quimiocinas/metabolismo , Derme/citologia , Derme/imunologia , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pessoa de Meia-Idade , Oxirredução , Fagocitose/imunologia , Cultura Primária de Células
16.
Mech Ageing Dev ; 190: 111322, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32735894

RESUMO

Ultraviolet (UV) light is known to potentially damage human skin and accelerate the skin aging process. Upon UVB exposure, melanocytes execute skin protection by increasing melanin production. Senescent cells, including senescent melanocytes, are known to accumulate in aged skin and contribute to the age-associated decline of tissue function. However, melanocyte senescence is still insufficiently explored. Here we describe a new model to investigate mechanisms of UVB-induced senescence in melanocytes and its role in photoaging. Exposure to mild and repeated doses of UVB directly influenced melanocyte proliferation, morphology and ploidy. We confirmed UVB-induced senescence with increased senescence-associated ß-galactosidase positivity and changed expression of several senescence markers, including p21, p53 and Lamin B1. UVB irradiation impaired proteasome and increased autophagic activity in melanocytes, while expanding intracellular melanin content. In addition, using a co-culture system, we could confirm that senescence-associated secretory phenotype components secreted by senescent fibroblasts modulated melanogenesis. In conclusion, our new model serves as an important tool to explore UVB-induced melanocyte senescence and its involvement in photoaging and skin pigmentation.


Assuntos
Senescência Celular , Fibroblastos , Melanócitos , Envelhecimento da Pele/efeitos da radiação , Pigmentação da Pele/efeitos da radiação , Pele , Raios Ultravioleta/efeitos adversos , Autofagia/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Senescência Celular/fisiologia , Senescência Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fibroblastos/patologia , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Humanos , Lamina Tipo B/metabolismo , Melanócitos/patologia , Melanócitos/fisiologia , Melanócitos/efeitos da radiação , Modelos Teóricos , Complexo de Endopeptidases do Proteassoma/efeitos da radiação , Pele/metabolismo , Pele/patologia , Pele/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , beta-Galactosidase/metabolismo
17.
Mech Ageing Dev ; 190: 111318, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32710895

RESUMO

Accumulation of senescent cells promotes the development of age-related pathologies and deterioration. In human skin, senescent cells potentially impair structure and function by secreting a mixture of signaling molecules and proteases that influence neighboring cells and degrade extracellular matrix components, such as elastin and collagen. One of the key underlying mechanisms of senescence and extrinsic skin aging is the increase of intracellular reactive oxygen species and resulting oxidative stress. Tert-butyl hydroperoxide (tBHP) is a known inducer of oxidative stress and cellular damage, acting at least in part by depleting the antioxidant glutathione. Here, we provide a detailed characterization of tBHP-induced senescence in human dermal fibroblasts in monolayer culture. In addition, results obtained with more physiological experimental models revealed that tBHP treated 3D reconstructed skin and ex vivo skin developed signs of chronic tissue damage, displaying reduced epidermal thickness and collagen fiber thinning. We, therefore, propose that tBHP treatment can be used as a model to study the effects of extrinsic skin aging, focusing mainly on the influence of environmental pollution.


Assuntos
Poluição Ambiental , Fibroblastos , Glutationa/metabolismo , Envelhecimento da Pele , Pele , terc-Butil Hidroperóxido/metabolismo , Antioxidantes/metabolismo , Células Cultivadas , Senescência Celular , Poluição Ambiental/efeitos adversos , Poluição Ambiental/análise , Epiderme/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fibroblastos/fisiologia , Humanos , Modelos Teóricos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Pele/patologia , Envelhecimento da Pele/patologia , Envelhecimento da Pele/fisiologia
18.
Mech Ageing Dev ; 190: 111284, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574647

RESUMO

Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.


Assuntos
Sinalização do Cálcio/fisiologia , Senescência Celular/fisiologia , Hidrolases/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Biologia Computacional , Humanos
19.
Biosci Rep ; 40(3)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32068790

RESUMO

FAH domain containing protein 1 (FAHD1) is a mammalian mitochondrial protein, displaying bifunctionality as acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. We report the crystal structure of mouse FAHD1 and structural mapping of the active site of mouse FAHD1. Despite high structural similarity with human FAHD1, a rabbit monoclonal antibody (RabMab) could be produced that is able to recognize mouse FAHD1, but not the human form, whereas a polyclonal antibody recognized both proteins. Epitope mapping in combination with our deposited crystal structures revealed that the epitope overlaps with a reported SIRT3 deacetylation site in mouse FAHD1.


Assuntos
Hidrolases/genética , Acetoacetatos/metabolismo , Animais , Carboxiliases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Mapeamento de Epitopos/métodos , Humanos , Hidrolases/química , Hidrolases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...