Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(3)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37804823

RESUMO

Two-dimensional material-based field-effect transistors are promising for future use in electronic and optoelectronic applications. However, trap states existing in the transistors are known to hinder device performance. They capture/release carriers in the channel and lead to hysteresis in the transfer characteristics. In this work, we fabricated MoTe2field-effect transistors on two different gate dielectrics, SiO2and h-BN, and investigated temperature-dependent charge trapping behavior on the hysteresis in their transfer curves. We observed that devices with SiO2back-gate dielectric are affected by both SiO2insulator traps and MoTe2intrinsic bulk traps, with the latter becoming prominent at temperatures above 310 K. Conversely, devices with h-BN back-gate dielectric, which host a negligible number of insulator traps, primarily exhibit MoTe2bulk traps at high temperatures, enabling us to estimate the trap energy level at 389 meV below the conduction band edge. A similar energy level of 396 meV below the conduction band edge was observed from the emission current transient measurement. From a previous computational study, we expect these trap states to be the tellurium vacancy. Our results suggest that charge traps in MoTe2field-effect transistors can be reduced by careful selection of gate insulators, thus providing guidelines for device fabrication.

2.
Nano Lett ; 23(17): 7927-7933, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647420

RESUMO

Transition metal dichalcogenides (TMDs) benefit electrical devices with spin-orbit coupling and valley- and topology-related properties. However, TMD-based devices suffer from traps arising from defect sites inside the channel and the gate oxide interface. Deactivating them requires independent treatments, because the origins are dissimilar. This study introduces a single treatment to passivate defects in a multilayer MoS2 FET. By applying back-gate bias, protons from an H-TFSI droplet are injected into the MoS2, penetrating deeply enough to reach the SiO2 gate oxide. The characterizations employing low-temperature transport and deep-level transient spectroscopy (DLTS) studies reveal that the trap density of S vacancies in MoS2 drops to the lowest detection level. The temperature-dependent mobility plot on the SiO2 substrate resembles that of the h-BN substrate, implying that dangling bonds in SiO2 are passivated. The carrier mobility on the SiO2 substrate is enhanced by approximately 2200% after the injection.

3.
ACS Appl Mater Interfaces ; 13(2): 2829-2835, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33410320

RESUMO

Hot carrier injection (HCI), occurring when the horizontal electric field is strongly applied, usually affects the degradation of nanoelectronic devices. In addition, metal contacts play a significant role in nanoelectronic devices. In this study, Schottky contacts in multilayer tungsten diselenide (WSe2) field-effect transistors (FETs) by hot carrier injection (HCI), occurring when a high drain voltage is applied, is investigated. A small number of hot carriers with high energy reduces the Schottky barrier height and improves the performance of FETs effectively rather than damaging the channel. Thermal annealing at the end of the fabrication process increases device performance by causing interfacial reactions of the source/drain electrodes. HCI causes a significant enhancement in the local asymmetry, especially in the subthreshold region. The subthreshold swing (SS) of the thermally annealed FETs is significantly improved from 9.66 to 0.562 V dec-1 through the energy of HCI generated by a strong horizontal electric field. In addition, the contact resistances (RSD), also called series resistances, extracted by a four-probe measurement and a Y-function method were also improved by decreasing to a 10th through the energy of HCI. To understand the asymmetrical characteristics of the channel after the stress, we performed electrical analysis, electrostatic force microscopy (EFM), and Raman spectroscopy.

4.
Nanotechnology ; 32(16): 165202, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33302263

RESUMO

Through time-dependent defect spectroscopy and low-frequency noise measurements, we investigate and characterize the differences of carrier trapping processes occurred by different interfaces (top/sidewall) of the gate-all-around silicon nanosheet field-effect transistor (GAA SiNS FET). In a GAA SiNS FET fabricated by the top-down process, the traps at the sidewall interface significantly affect the device performance as the width decreases. Compare to expectations, as the width of the device decreases, the subthreshold swing (SS) increases from 120 to 230 mV/dec, resulting in less gate controllability. In narrow-width devices, the effect of traps located at the sidewall interface is significantly dominant, and the 1/f 2 noise, also known as generation-recombination (G-R) noise, is clearly appeared with an increased time constant (τ i ). In addition, the probability density distributions for the normalized current fluctuations (ΔI D) show only one Gaussian in wide-width devices, whereas they are separated into four Gaussians with increased in narrow-width devices. Therefore, fitting is performed through the carrier number fluctuation-correlated with mobility fluctuations model that separately considered the effects of sidewall. In narrow-width GAA SiNS FETs, consequently, the extracted interface trap densities (N T ) distribution becomes more dominant, and the scattering parameter ([Formula: see text]) distribution increases by more than double.

5.
Nanotechnology ; 31(45): 455202, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32325431

RESUMO

Irradiation of MoS2 field-effect transistors (FETs) fabricated on Si/SiO2 substrates with electron beams (e-beams) below 30 keV creates electron-hole pairs (EHP) in the SiO2, which increase the interface trap density (Nit ) and change the current path in the channel, resulting in performance changes. In situ measurements of the electrical characteristics of the FET performed using a nano-probe system mounted inside a scanning electron microscope show that e-beam irradiation enables both multilayer and monolayer MoS2 channels act as conductors. The e-beams mostly penetrate the channel owing to their large kinetic energy, while the EHPs formed in the SiO2 layer can contribute to the conductance by flowing into the MoS2 channel or inducing the gate bias effect. The analysis of the device parameters in the initial state and the vent-evacuation state after e-beam irradiation can clarify the effect of the interplay between the e-beam-induced EHPs and ambient adsorbates on the carrier behavior, which depends on the thickness of the MoS2 layer. DC and low frequency noise analysis reveals that the e-beam-induced EHPs increase Nit from 109-1010 to 1011 cm-2 eV-1 in both monolayer and multilayer devices, while the interfacial Coulomb scattering parameter αSC increases by three times in the monolayer and decreases to one-tenth of its original value in the multilayer. In other words, an MoS2 layer with a thickness of ∼30 nm is less sensitive to adsorbates by surface screening. Thus, the carrier mobility in the monolayer device decreases from 45.7 to 40 cm2 V-1 s-1, while in the 30 nm-thick multilayer device, it increases from 4.9 to 5.6 cm2 V-1 s-1. This is further evidenced by simulations of the distribution of interface traps and channel carriers in the MoS2 FET before and after e-beam irradiation, demonstrating that Coulomb scattering decreases as the effective channel moves away from the interface.

6.
Nanotechnology ; 31(25): 255201, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32163941

RESUMO

In field-effect transistors (FETs), when the thickness of the semiconducting transition metal dichalcogenides (TMDs) channel exceeds the maximum depletion depth, the entire region cannot be completely controlled by a single-gate electric field. The layer-to-layer carrier transitions between the van der Waals interacted TMD layers result in the extraordinary anisotropic carrier transport in the in-plane and out-of-plane directions. The performance of the TMD FETs can be largely enhanced by optimizing the thickness of the TMD channel as well as increasing the effective channel area through which the gate field is delivered. In this study, we investigated the carrier behavior and device performance in double-gate FETs fabricated using a 57 nm thick MoS2, which is thicker than the maximum depletion depth of about 50 nm, and a much thinner 4 nm thick MoS2. The results showed that in the thick MoS2, the gate voltages at both ends formed two independent channels which had no synergistic effect on the device performance owing to the inefficient delivery of the vertical electric field. On the other hand, in the thin MoS2 channel, the double-gate voltages effectively controlled one channel, resulting in twice the carrier mobility and operation in a low electric field region, i.e. below 0.2 MV cm-1.

7.
Nanoscale ; 11(45): 22118-22124, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31720663

RESUMO

Transition-metal dichalcogenide (TMD) materials with two-dimensional layered structures and stable surfaces are well suited for transparent and flexible device applications. In order to completely utilize the advantages of thickness control and fabrication of various heterostructure stacks, we proposed a transfer method of TMD field-effect transistors (FETs) and TMD complementary metal-oxide-semiconductor (CMOS) circuits from a Si/SiO2 substrate to a flexible substrate. We compared the characteristics of transferred MoS2 and WSe2 FETs with those of the corresponding devices transferred after channel passivation with an Al2O3 layer on a flexible substrate. Al2O3 passivation further stabilized the transfer of the entire device with electrodes. A CMOS circuit with MoS2 and WSe2 materials could be successfully transferred to a polyethylene terephthalate substrate after the channel passivation. This implies that TMD circuits can be easily fabricated on polymer substrates, which makes them suitable for use in semiconductor processes, for various applications.

8.
ACS Appl Mater Interfaces ; 11(32): 29022-29028, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313897

RESUMO

The transport behaviors of MoS2 field-effect transistors (FETs) with various channel thicknesses are studied. In a 12 nm thick MoS2 FET, a typical switching behavior is observed with an Ion/Ioff ratio of 106. However, in 70 nm thick MoS2 FETs, the gating effect weakens with a large off-current, resulting from the screening of the gate field by the carriers formed through the ionization of S vacancies at 300 K. Hence, when the latter is dual-gated, two independent conductions develop with different threshold voltage (VTH) and field-effect mobility (µFE) values. When the temperature is lowered for the latter, both the ionization of S vacancies and the gate-field screening reduce, which revives the strong Ion/Ioff ratio and merges the two separate channels into one. Thus, only one each of VTH and µFE are seen from the thick MoS2 FET when the temperature is less than 80 K. The change of the number of conduction channels is attributed to the ionization of S vacancies, which leads to a temperature-dependent intra- and interlayer conductance and the attenuation of the electrostatic gate field. The defect-related transport behavior of thick MoS2 enables us to propose a new device structure that can be further developed to a vertical inverter inside a single MoS2 flake.

9.
ACS Appl Mater Interfaces ; 11(21): 19565-19571, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31045342

RESUMO

Both photothermal and photovoltaic infrared (IR) detectors employ sensing materials that have an optical band gap. Different from these conventional materials, graphene has a conical band structure that imposes zero band gap. In this study, using the semimetallic multilayer graphene, IR detection at room temperature is realized. The relatively high Seebeck coefficient, ranging from 40 to 60 µV/K, compared to that of the metal, and the large optical absorption in the mid-IR region, in the wavelength range of 7-17 µm, enable graphene to detect IR without an absorber, which is essential for most IR detectors because the band gap of the sensing materials is much larger than the energy of IR and the incident IR can be absorbed directly by the sensing material. Thus, the incident IR can be absorbed directly by the sensing material in our device. The developed detector with a SiN membrane shows high responsivity and detectivity, which are 140 V/W and 5 × 108 cm·Hz1/2/W at 5 Hz, respectively. In addition, the IR sensor shows a response time of 600 µs. In the room-temperature operation of the IR sensor array without cooling, our sensors detect IR emitted from a human body and track the movement. The availability of large-area graphene in current technology opens new applications for metallic two-dimensional materials and a possibility for scale-up.

10.
Nanotechnology ; 30(34): 345206, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31051484

RESUMO

Compared to the silicon device whose performance is severely degraded due to the pin-holes and channel inactive space when the channel thickness is less than 1 nm, despite monolayer transition-metal dichalcogenides being the most stable structure to be used as a two-dimensional semiconductor material, precise analysis of the double-gate (DG) field-effect transistor (FET) device structure has hardly been performed thus far. Hence, we analyzed the device operation characteristics of single-gate and DG sweeps in a monolayer MoS2 DG FET structure, where the interfacial carrier behavior is distinguished from both gates by the different gate dielectric materials at the top and bottom. The synchronized DG sweep operation with biasing of V TG and V BG (=10 V TG ) increased the carrier mobility by a factor of 4.85 compared with the independent DG sweep. Direct-current analysis and low-frequency noise modeling indicate that the device performance improves under equivalent gate voltages from both sides, because the device operates in a low vertical electric field and the interfacial carrier fluctuation effect is significantly reduced.

11.
ACS Appl Mater Interfaces ; 11(10): 10068-10073, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30762341

RESUMO

Imperfections in the crystal lattice, such as defects, grain boundaries, or dislocations, can significantly affect the optical and electrical transport properties of materials. In this study, we report the effect of mid gap trap states on photocurrent in 10 atomic layered 2H-MoTe2. Our study reveals that the photocurrent is very sensitive to the number of active traps, which can be controlled by Vgs. By fitting the measured transient drain current, our estimation shows that the trap-state density is approximately 5 × 1011 cm-2. By analyzing the photocurrent data as a function of the gate voltage, we realize how the ionized traps affect the photoexcited carriers. The model of hole traps, electron traps, and recombination centers inside the band gap successfully describes our observed results.

12.
Nanotechnology ; 30(3): 035206, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30444730

RESUMO

Clean interface and low contact resistance are crucial requirements in two-dimensional (2D) materials to preserve their intrinsic carrier mobility. However, atomically thin 2D materials are sensitive to undesired Coulomb scatterers such as surface/interface adsorbates, metal-to-semiconductor Schottky barrier (SB), and ionic charges in the gate oxides, which often limits the understanding of the charge scattering mechanism in 2D electronic systems. Here, we present the effects of hafnium dioxide (HfO2) high-κ passivation and SB height on the low-frequency (LF) noise characteristics of multilayer molybdenum ditelluride (MoTe2) transistors. The passivated HfO2 passivation layer significantly suppresses the surface reaction and enhances dielectric screening effect, resulting in an excess electron n-doping, zero hysteresis, and substantial improvement in carrier mobility. After the high-κ HfO2 passivation, the obtained LF noise data appropriately demonstrates the transition of the Coulomb scattering mechanism from the SB contact to the channel, revealing the significant SB noise contribution to the 1/f noise. The substantial excess LF noise in the subthreshold regime is mainly attributed to the excess metal-to-MoTe2 SB noise and is fully eliminated at the high drain bias regime. This study provides a clear insight into the origin of electronic signal perturbation in 2D electronic systems.

13.
Adv Mater ; 31(6): e1805860, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30549104

RESUMO

Charge carrier transport in multilayer van der Waals (vdW) materials, which comprise multiple conducting layers, is well described using Thomas-Fermi charge screening (λTF ) and interlayer resistance (Rint ). When both effects occur in carrier transport, a channel centroid migrates along the c-axis according to a vertical electrostatic force, causing redistribution of the conduction centroid in a multilayer system, unlike a conventional bulk material. Thus far, numerous unique properties of vdW materials are discovered, but direct evidence for distinctive charge transport behavior in 2D layered materials is not demonstrated. Herein, the distinctive electron conduction features are reported in a multilayer rhenium disulfide (ReS2 ), which provides decoupled vdW interaction between adjacent layers and much high interlayer resistivity in comparison with other transition-metal dichalcogenides materials. The existence of two plateaus in its transconductance curve clearly reveals the relocation of conduction paths with respect to the top and bottom surfaces, which is rationalized by a theoretical resistor network model by accounting of λTF and Rint coupling. The effective tunneling distance probed via low-frequency noise spectroscopy further supports the shift of electron conduction channel along the thickness of ReS2 .

14.
Nanoscale ; 10(23): 10856-10862, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29873382

RESUMO

Direct current (DC) and low-frequency (LF) noise analyses of a chemical vapor deposition (CVD)-grown monolayer MoS2 field effect transistor (FET) indicate that time-varying carrier perturbations originate from gas adsorbates. The LF noise analysis supports that the natural desorption of physisorbed gas molecules, water and oxygen, largely reduces the interface trap density (NST) under vacuum conditions (∼10-8 Torr) for 2 weeks. After a longer period of 8 months under vacuum, the carrier scattering mechanism alters, in particular for the low carrier density (Nacc) region. A decrease of both NST and the scattering parameter αSC with desorption of surface adsorbates from MoS2, explains the enhanced carrier mobility and the early turn-on of the device. The stabilized carrier behavior is verified with γ = 0.5 in the formula αSC ∝ Nacc-γ, as in Si-MOSFETs. Our results support that the gas adsorbates work as charged impurities, rather than neutral ones.

15.
J Nanosci Nanotechnol ; 18(9): 5996-6000, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677731

RESUMO

This study provides new insight into mechanisms of ionic reactions on the surface of ZnO nanorod networks, which could result in enhanced performance in optical or molecular sensors. The current- voltage characteristics of ZnO nanorod network devices exhibit typical nonlinear behavior in air, which implies the formation of a Schottky barrier when metals are used as contacts. The conductance of the device increased significantly in vacuum, which can be explained by the desorption of hydroxyl groups at very low pressure. While physisorbed water or oxygen-related ions can detach from the ZnO surface during evacuation, exposure to high energy in the electron beam is believed to detach the chemisorbed anions of O- and O-2 from the surface of ZnO nanorods, which releases more electrons into the channel. The increase in available electrons enhances the conductance of the ZnO nanorods. Slow initialization of the conductance under ambient conditions indicates that the ionic re-adsorption is inactive under these conditions. Thus, the electron irradiation process can be used to reset the surface ionic molecules on metal oxide nano-structures by tuning the surface potential prior to the passivation process.

16.
ACS Appl Mater Interfaces ; 9(34): 29185-29192, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28786660

RESUMO

There is a general consensus that the carrier mobility in a field-effect transistor (FET) made of semiconducting transition-metal dichalcogenides (s-TMDs) is severely degraded by the trapping/detrapping and Coulomb scattering of carriers by ionic charges in the gate oxides. Using a double-gated (DG) MoTe2 FET, we modulated and enhanced the carrier mobility by adjusting the top- and bottom-gate biases. The relevant mechanism for mobility tuning in this device was explored using static DC and low-frequency (LF) noise characterizations. In the investigations, LF-noise analysis revealed that for a strong back-gate bias the Coulomb scattering of carriers by ionized traps in the gate dielectrics is strongly screened by accumulation charges. This significantly reduces the electrostatic scattering of channel carriers by the interface trap sites, resulting in increased mobility. The reduction of the number of effective trap sites also depends on the gate bias, implying that owing to the gate bias, the carriers are shifted inside the channel. Thus, the number of active trap sites decreases as the carriers are repelled from the interface by the gate bias. The gate-controlled Coulomb-scattering parameter and the trap-site density provide new handles for improving the carrier mobility in TMDs, in a fundamentally different way from dielectric screening observed in previous studies.

17.
ACS Appl Mater Interfaces ; 9(5): 5006-5013, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28093916

RESUMO

As the thickness becomes thinner, the importance of Coulomb scattering in two-dimensional layered materials increases because of the close proximity between channel and interfacial layer and the reduced screening effects. The Coulomb scattering in the channel is usually obscured mainly by the Schottky barrier at the contact in the noise measurements. Here, we report low-temperature (T) noise measurements to understand the Coulomb scattering mechanism in the MoS2 channel in the presence of h-BN buffer layer on the silicon dioxide (SiO2) insulating layer. One essential measure in the noise analysis is the Coulomb scattering parameter (αSC) which is different for channel materials and electron excess doping concentrations. This was extracted exclusively from a 4-probe method by eliminating the Schottky contact effect. We found that the presence of h-BN on SiO2 provides the suppression of αSC twice, the reduction of interfacial traps density by 100 times, and the lowered Schottky barrier noise by 50 times compared to those on SiO2 at T = 25 K. These improvements enable us to successfully identify the main noise source in the channel, which is the trapping-detrapping process at gate dielectrics rather than the charged impurities localized at the channel, as confirmed by fitting the noise features to the carrier number and correlated mobility fluctuation model. Further, the reduction in contact noise at low temperature in our system is attributed to inhomogeneous distributed Schottky barrier height distribution in the metal-MoS2 contact region.

18.
Nano Lett ; 16(10): 6383-6389, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27649454

RESUMO

Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS2 can induce ∼6.5 × 1011 cm-2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS2 on h-BN was found to be ∼5 × 1013 cm-2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS2/h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 1012 cm-2 (T = 25 K). The reduced effective Schottky barrier height in MoS2/h-BN is attributed to the decreased effective work function of MoS2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO2.

19.
ACS Appl Mater Interfaces ; 8(29): 19092-9, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27362461

RESUMO

For transition metal dichalcogenides, the fluctuation of the channel current due to charged impurities is attributed to a large surface area and a thickness of a few nanometers. To investigate current variance at the interface of transistors, we obtain the low-frequency (LF) noise features of MoTe2 multilayer field-effect transistors with different dielectric environments. The LF noise properties are analyzed using the combined carrier mobility and carrier number fluctuation model which is additionally parametrized with an interfacial Coulomb-scattering parameter (α) that varies as a function of the accumulated carrier density (Nacc) and the location of the active channel layer of MoTe2. Our model shows good agreement with the current power spectral density (PSD) of MoTe2 devices from a low to high current range and indicates that the parameter α exhibits a stronger dependence on Nacc with an exponent -γ of -1.18 to approximately -1.64 for MoTe2 devices, compared with -0.5 for Si devices. The raised Coulomb scattering of the carriers, particularly for a low-current regime, is considered to be caused by the unique traits of layered semiconductors such as interlayer coupling and the charge distribution strongly affected by the device structure under a gate bias, which completely change the charge screening effect in MoTe2 multilayer. Comprehensive static and LF noise analyses of MoTe2 devices with our combined model reveal that a chemical-vapor deposited h-BN monolayer underneath MoTe2 channel and the Al2O3 passivation layer have a dissimilar contribution to the reduction of current fluctuation. The three-fold enhanced carrier mobility due to the h-BN is from the weakened carrier scattering at the gate dielectric interface and the additional 30% increase in carrier mobility by Al2O3 passivation is due to the reduced interface traps.

20.
Korean J Orthod ; 43(1): 42-52, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23503161

RESUMO

The aim of this paper was to propose a new method of bimaxillary orthognathic surgery planning and model surgery based on the concept of 6 degrees of freedom (DOF). A 22-year-old man with Class III malocclusion was referred to our clinic with complaints of facial deformity and chewing difficulty. To correct a prognathic mandible, facial asymmetry, flat occlusal plane angle, labioversion of the maxillary central incisors, and concavity of the facial profile, bimaxillary orthognathic surgery was planned. After preoperative orthodontic treatment, surgical planning based on the concept of 6 DOF was performed on a surgical treatment objective drawing, and a Jeon's model surgery chart (JMSC) was prepared. Model surgery was performed with Jeon's orthognathic surgery simulator (JOSS) using the JMSC, and an interim wafer was fabricated. Le Fort I osteotomy, bilateral sagittal split ramus osteotomy, and malar augmentation were performed. The patient received lateral cephalometric and posteroanterior cephalometric analysis in postretention for 1 year. The follow-up results were determined to be satisfactory, and skeletal relapse did not occur after 1.5 years of surgery. When maxillary and mandibular models are considered as rigid bodies, and their state of motion is described in a quantitative manner based on 6 DOF, sharing of exact information on locational movement in 3-dimensional space is possible. The use of JMSC and JOSS will actualize accurate communication and performance of model surgery among clinicians based on objective measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...