Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ultramicroscopy ; 249: 113733, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37030159

RESUMO

Advancements in ultrafast electron microscopy have allowed elucidation of spatially selective structural dynamics. However, as the spatial resolution and imaging capabilities have made progress, quantitative characterization of the electron pulse trains has not been reported at the same rate. In fact, inexperienced users have difficulty replicating the technique because only a few dedicated microscopes have been characterized thoroughly. Systems replacing laser driven photoexcitation with electrically driven deflectors especially suffer from a lack of quantified characterization because of the limited quantity. The primary advantages to electrically driven systems are broader frequency ranges, ease of use and simple synchronization to electrical pumping. Here, we characterize the technical parameters for electrically driven UEM including the shape, size and duration of the electron pulses using low and high frequency chopping methods. At high frequencies, pulses are generated by sweeping the electron beam across a chopping aperture. For low frequencies, the beam is continuously forced off the optic axis by a DC potential, then momentarily aligned by a countering pulse. Using both methods, we present examples that measure probe durations of 2 ns and 10 ps for the low and high frequency techniques, respectively. We also discuss how the implementation of a pulsed probe affects STEM imaging conditions by adjusting the first condenser lens.

3.
Ultramicroscopy ; 235: 113497, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35193073

RESUMO

The development of ultrafast electron microscopy (UEM), specifically stroboscopic imaging, has brought the study of structural dynamics to a new level by overcoming the spatial limitations of ultrafast spectroscopy and the temporal restrictions of traditional TEM simultaneously. Combining the concepts governing both techniques has enabled direct visualization of dynamics with spatiotemporal resolutions in the picosecond-nanometer regime. Here, we push the limits of imaging using a pulsed electron beam via RF induced transverse deflection based on the newly developed 200 keV frequency-tunable strip-line pulser. We demonstrate a 0.2 nm spatial resolution and elucidation of magnetic spin induction maps using the phase-microscopy method. We also present beam coherence measurements and expand our study using the breathing modes of a silicon interdigitated comb under RF excitation which achieves improved temporal synchronization between the electron pulse-train and electric field. A new RF holder has also been developed with impedance matching to the RF signal to minimize transmission power loss to samples and its performance is compared with a conventional sample holder.

4.
Sci Adv ; 6(40)2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33008895

RESUMO

Integrating femtosecond lasers with electron microscopies has enabled direct imaging of transient structures and morphologies of materials in real time and space. Here, we report the development of a laser-free ultrafast electron microscopy (UEM) offering the same capability but without requiring femtosecond lasers and intricate instrumental modifications. We create picosecond electron pulses for probing dynamic events by chopping a continuous beam with a radio frequency (RF)-driven pulser with the pulse repetition rate tunable from 100 MHz to 12 GHz. As a first application, we studied gigahertz electromagnetic wave propagation dynamics in an interdigitated comb structure. We reveal, on nanometer space and picosecond time scales, the transient oscillating electromagnetic field around the tines of the combs with time-resolved polarization, amplitude, and local field enhancement. This study demonstrates the feasibility of laser-free UEM in real-space visualization of dynamics for many research fields, especially the electrodynamics in devices associated with information processing technology.

5.
Rev Sci Instrum ; 91(2): 021301, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113442

RESUMO

A 300 keV transmission electron microscope was modified to produce broadband pulsed beams that can be, in principle, between 40 MHz and 12 GHz, corresponding to temporal resolution in the nanosecond to picosecond range without an excitation laser. The key enabling technology is a pair of phase-matched modulating and de-modulating traveling wave metallic comb striplines (pulsers). An initial temporal resolution of 30 ps was achieved with a strobe frequency of 6.0 GHz. The placement of the pulsers, mounted immediately below the gun, allows for preservation of all optical configurations, otherwise available to the unmodified instrument, and therefore makes such a post-modified instrument for dual-use, i.e., both pulsed-beam mode (i.e., stroboscopic time-resolved) and conventional continuous waveform mode. In this article, we describe the elements inserted into the beam path, challenges encountered during integration with an in-service microscope, and early results from an electric-field-driven pump-probe experiment. We conclude with ideas for making this class of instruments broadly applicable for examining cyclical and repeatable phenomena.

6.
Phys Rev Lett ; 124(5): 054802, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083891

RESUMO

We propose and demonstrate a method to reduce the pulse width and timing jitter of a relativistic electron beam through THz driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse copropagating in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of 4 from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics. This technique provides an effective way to manipulate beam longitudinal phase space with a THz pulse and may have a strong impact in accelerator and ultrafast science facilities that require femtosecond electron beams with tight synchronization to external lasers.

7.
Ultramicroscopy ; 207: 112829, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31476611

RESUMO

For two decades, time-resolved transmission electron microscopes (TEM) have relied on pulsed-laser photoemission to generate electron bunches to explore sub-microsecond to sub-picosecond dynamics. Despite the vast successes of photoemission time-resolved TEMs, laser-based systems are inherently complex, thus tend not to be turn-key. In this paper, we report on the successful retrofit of a commercial 200 keV TEM, without an external laser, capable of producing continuously tunable pulsed electron beams with repetition rates from 0.1 GHz up to 12 GHz and a tunable bunch length from tens of nanoseconds down to 10 ps. This innovation enables temporal access into previously inaccessible regimes: i.e., high repetition rate stroboscopic experiments. Combination of a pair of RF-driven traveling wave stripline elements, quadrupole magnets, and a variable beam aperture enables operation of the instrument in (1) continuous waveform (CW) mode as though the instrument was never modified (i.e. convention TEM operation mode, where the electrons from the emission cathode randomly arrive at the sample without resolvable time information), (2) stroboscopic (pump-probe) mode, and (3) pulsed beam mode for dose rate sensitive materials. To assess the effect of a pulsed beam on image quality, we examined Au nanoparticles using bright field, high-resolution TEM imaging and selected area diffraction in both continuous and pulsed-beam mode. In comparison of conventional TEMs, the add-on beam pulser enables the observation of ultrafast dynamic behavior in materials that are reversible under synchronized excitation.

8.
Phys Rev Lett ; 123(5): 057402, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31491320

RESUMO

We demonstrate, theoretically and experimentally, that a traveling electric charge passing from one photonic crystal into another generates edge waves-electromagnetic modes with frequencies inside the common photonic band gap localized at the interface-via a process of transition edge-wave radiation (TER). A simple and intuitive expression for the TER spectral density is derived and then applied to a specific structure: two interfacing photonic topological insulators with opposite spin-Chern indices. We show that TER breaks the time-reversal symmetry and enables valley- and spin-polarized generation of topologically protected edge waves propagating in one or both directions along the interface. Experimental measurements at the Argonne Wakefield Accelerator Facility are consistent with the excitation and localization of the edge waves. The concept of TER paves the way for novel particle accelerators and detectors.

9.
Phys Rev Lett ; 122(14): 144801, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31050450

RESUMO

We propose and demonstrate a terahertz (THz) oscilloscope for recording time information of an ultrashort electron beam. By injecting a laser-driven THz pulse with circular polarization into a dielectric tube, the electron beam is swept helically such that the time information is uniformly encoded into the angular distribution that allows one to characterize both the temporal profile and timing jitter of an electron beam. The dynamic range of the measurement in such a configuration is significantly increased compared to deflection with a linearly polarized THz pulse. With this THz oscilloscope, nearly 50-fold longitudinal compression of a relativistic electron beam to about 15 fs (rms) is directly visualized with its arrival time determined with 3 fs accuracy. This technique bridges the gap between streaking of photoelectrons with optical lasers and deflection of relativistic electron beams with radio-frequency deflectors, and should have wide applications in many ultrashort electron-beam-based facilities.

10.
Phys Rev Lett ; 122(1): 014801, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012710

RESUMO

We present the first demonstration of high-power, reversed-Cherenkov wakefield radiation by electron bunches passing through a metamaterial structure. The structure supports a fundamental transverse magnetic mode with a negative group velocity leading to reversed-Cherenkov radiation, which was clearly verified in the experiments. Single 45 nC electron bunches of 65 MeV traversing the structure generated up to 25 MW in 2 ns pulses at 11.4 GHz, in excellent agreement with theory. Two bunches of 85 nC with appropriate temporal spacing generated up to 80 MW by coherent wakefield superposition, the highest rf power that metamaterial structures ever experienced without damage. These results demonstrate the unique features of metamaterial structures that are very attractive for future high-gradient wakefield accelerators, including two-beam and collinear accelerators. Advantages include the high shunt impedance for high-power generation and high-gradient acceleration, the simple and rugged structure, and a large parameter space for optimization.

11.
Phys Rev Lett ; 117(8): 084801, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588860

RESUMO

Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (∼100 µm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ∼100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor ß of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ∼75% strong emission areas overlap with the spots where rf breakdown has occurred.

12.
Phys Rev Lett ; 116(6): 064801, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26918995

RESUMO

We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic-band-gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have the potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. We conducted an experiment at the Argonne Wakefield Accelerator test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.

13.
Ultramicroscopy ; 161: 130-136, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683815

RESUMO

A device and a method for producing ultrashort electron pulses with GHz repetition rates via pulsing an input direct current (dc) electron beam are provided. The device and the method are based on an electromagnetic-mechanical pulser (EMMP) that consists of a series of transverse deflecting cavities and magnetic quadrupoles. The EMMP modulates and chops the incoming dc electron beam and converts it into pico- and sub-pico-second electron pulse sequences (pulse trains) at >1GHz repetition rates, as well as controllably manipulates the resulting pulses. Ultimately, it leads to negligible electron pulse phase-space degradation compared to the incoming dc beam parameters. The temporal pulse length and repetition rate for the EMMP can be continuously tunable over wide ranges. Applying the EMMP to a transmission electron microscope (TEM) with any dc electron source (e.g. thermionic, Schottky, or field-emission source), a GHz stroboscopic high-duty-cycle TEM can be realized. Unlike in many recent developments in time-resolved TEM that rely on a sample pumping laser paired with a laser launching electrons from a photocathode to probe the sample, there is no laser in the presented experimental set-up. This is expected to be a significant relief for electron microscopists who are not familiar with laser systems. The EMMP and the sample are externally driven by a radiofrequency (RF) source synchronized through a delay line. With no laser pumping the sample, the problem of the pump laser induced residual heating/damaging the sample is eliminated. As many RF-driven processes can be cycled indefinitely, sampling rates of 1-50GHz become accessible. Such a GHz stroboscopic TEM would open up a new paradigm for in situ and in operando experiments to study samples externally driven electromagnetically. Complementary to the lower (MHz) repetition rates experiments enabled by laser photocathode TEM, new experiments in the multi-GHz regime will be enabled by the proposed RF design. Because TEM is also a platform for various analytical methods, there are infinite application opportunities in energy and electronics to resolve charge (electronic and ionic) transport, and magnetic, plasmonic and excitonic dynamics in advanced functional materials. In addition, because the beam duty-cycle can be as high as ~10(-1) (or 10%), detection can be accomplished by commercially available detectors. In this article, we report an optimal design of the EMMP. The optimal design was found using an analytical generalized matrix approach in the thin lens approximation along with detailed beam dynamics taking actual realistic dc beam parameters in a TEM operating at 200keV.

14.
Phys Rev Lett ; 115(26): 264802, 2015 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-26764996

RESUMO

Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. A very strong correlation of the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.

15.
Rev Sci Instrum ; 84(2): 022706, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464188

RESUMO

A table top device for producing high peak power (tens of megawatts to a gigawatt) T-ray beams is described. An electron beam with a rectangular longitudinal profile is produced out of a photoinjector via stacking of the laser pulses. The beam is also run off-crest of the photoinjector rf to develop an energy chirp. After passing through a dielectric loaded waveguide, the beam's energy becomes modulated by its self-wake. In a chicane beamline following the dielectric energy-bunching section this energy modulation is converted to a density modulation-a bunch train. The density modulated beam can be sent through a power extraction section, like a dielectric loaded accelerating structure, or simply can intercept a foil target, producing THz radiation of various bandwidths and power levels.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(1 Pt 2): 016502, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12935263

RESUMO

By applying different symmetric boundary conditions, we found that the transverse wakefields generated by an electron bunch traveling through a partially loaded rectangular dielectric structure at an off center position can be decomposed into corresponding orthogonal longitudinal section electric (LSE) and longitudinal section magnetic (LSM) modes for guided waves as in the case of longitudinal wakefields treated previously. The wakefields are characterized using the normalized shunt impedance R/Q, a function of the geometry of the accelerating structure, for both LSE and LSM modes. A numerical example is given for an X-band waveguide structure and detailed results are given for the several leading transverse wakefield terms. The analytic results obtained are in agreement with the results from the time domain simulation tool MAFIA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...