Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Mech Behav Biomed Mater ; 146: 106097, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678107

RESUMO

OBJECTIVE: Mandibular reconstruction using patient-specific cage implants is a promising alternative to the vascularized free flap reconstruction for nonirradiated patients with adequate soft tissues, or for patients whose clinical condition is not conducive to microsurgical reconstruction. This study aimed to assess the biomechanical performance of 3D printed patient-specific cage implants designed with a semi-automated workflow in a combined cadaveric and retrospective case series study. METHODS: We designed cage implants for two human cadaveric mandibles using our previously developed design workflow. The biomechanical performance of the implants was assessed with the finite element analysis (FEA) and quasi-static biomechanical testing. Digital image correlation (DIC) was used to measure the full-field strains and validate the FE models by comparing the distribution of maximum principal strains within the bone. The retrospective study of a case series involved three patients, each of whom was treated with a cage implant of similar design. The biomechanical performance of these implants was evaluated using the experimentally validated FEA under the scenarios of both mandibular union and nonunion. RESULTS: No implant or screw failure was observed prior to contralateral bone fracture during the quasi-static testing of both cadaveric mandibles. The FEA and DIC strain contour plots indicated a strong linear correlation (r = 0.92) and a low standard error (SE=29.32µÎµ), with computational models yielding higher strain values by a factor of 2.7. The overall stresses acting on the case series' implants stayed well below the yield strength of additively manufactured (AM) commercially pure titanium, when simulated under highly strenuous chewing conditions. Simulating a full union between the graft and remnant mandible yielded a substantial reduction (72.7±1.5%) in local peak stresses within the implants as compared to a non-bonded graft. CONCLUSIONS: This study shows the suitability of the developed semi-automated workflow in designing patient-specific cage implants with satisfactory mechanical functioning under demanding chewing conditions. The proposed workflow can aid clinical engineers in creating reconstruction systems and streamlining pre-surgical planning. Nevertheless, more research is still needed to evaluate the osteogenic potential of bone graft insertions.


Assuntos
Parafusos Ósseos , Mandíbula , Humanos , Estudos Retrospectivos , Fluxo de Trabalho , Mandíbula/cirurgia , Cadáver
2.
J Mech Behav Biomed Mater ; 132: 105291, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35660552

RESUMO

The reconstruction of large mandibular defects with optimal aesthetic and functional outcomes remains a major challenge for maxillofacial surgeons. The aim of this study was to design patient-specific mandibular reconstruction implants through a semi-automated digital workflow and to assess the effects of topology optimization on the biomechanical performance of the designed implants. By using the proposed workflow, a fully porous implant (LA-implant) and a topology-optimized implant (TO-implant) both made of Ti-6Al-4V ELI were designed and additively manufactured using selective laser melting. The mechanical performance of the implants was predicted by performing finite element analysis (FEA) and was experimentally assessed by conducting quasi-static and cyclic biomechanical tests. Digital image correlation (DIC) was used to validate the FE model by comparing the principal strains predicted by the FEM model with the measured distribution of the same type of strain. The numerical predictions were in good agreement with the DIC measurements and the predicted locations of specimen failure matched the actual ones. No statistically significant differences (p < 0.05) in the mean stiffness, mean ultimate load, or mean ultimate displacement were detected between the LA- and TO-implant groups. No implant failures were observed during quasi-static or cyclic testing under masticatory loads that were substantially higher (>1000 N) than the average maximum biting force of healthy individuals. Given its relatively lower weight (16.5%), higher porosity (17.4%), and much shorter design time (633.3%), the LA-implant is preferred for clinical application. This study clearly demonstrates the capability of the proposed workflow to develop patient-specific implants with high precision and superior mechanical performance, which will greatly facilitate cost- and time-effective pre-surgical planning and is expected to improve the surgical outcome.


Assuntos
Reconstrução Mandibular , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Estresse Mecânico , Titânio , Fluxo de Trabalho
3.
BMC Health Serv Res ; 21(1): 955, 2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34511093

RESUMO

BACKGROUND: Internationally, elective spinal surgery rates in workers' compensation populations are high, as are reoperation rates, while return-to-work rates following spinal surgery are low. Little information is available from Australia. The aim of this study was to describe the rates, costs, return to work and reoperation following elective spinal surgery in the workers' compensation population in New South Wales (NSW), Australia. METHODS: This retrospective cohort study used administrative data from the State Insurance Regulatory Authority, the government organisation responsible for regulating and administering workers' compensation insurance in NSW. These data cover all workers' compensation-insured workers in New South Wales (over 3 million workers/year). We identified a cohort of insured workers who underwent elective spinal surgery (fusion or decompression) between January 1, 2010 and December 31, 2018. People who underwent surgery for spinal fracture or dislocation, or who had sustained a traumatic brain injury were excluded. The main outcome measures were annual spinal surgery rates, cost of the surgical episode, cumulative costs (surgical, hospital, medical and physical therapy) to 2 years post-surgery, and reoperation and return-to-work rates 2 years post-surgery. RESULTS: There were 9343 eligible claims (39.1 % fusion; 59.9 % decompression); claimants were predominantly male (75 %) with a mean age of 43 (range 18 to 75) years. Spinal surgery rates ranged from 15 to 29 surgeries per 100,000 workers per year, fell from 2011-12 to 2014-15 and rose thereafter. The average cost in Australian dollars for a surgical episode was $46,000 for a spinal fusion and $20,000 for a decompression. Two years post-fusion, only 19 % of people had returned to work at full capacity; 39 % after decompression. Nineteen percent of patients underwent additional spinal surgery within 2 years of the index surgery, to a maximum of 5 additional surgeries. CONCLUSION: Rates of workers' compensation-funded spinal surgery did not rise significantly during the study period, but reoperation rates are high and return-to-work rates are low in this population at 2 years post- surgery. In the context of the poor evidence base supporting lumbar fusion surgery, the high cost, increasing rates, and the increased likelihood of poor outcomes in the workers' compensation population, we question the value of this procedure in this setting.


Assuntos
Retorno ao Trabalho , Indenização aos Trabalhadores , Adolescente , Adulto , Idoso , Austrália , Estudos de Coortes , Humanos , Vértebras Lombares , Masculino , Pessoa de Meia-Idade , New South Wales/epidemiologia , Reoperação , Estudos Retrospectivos , Adulto Jovem
5.
Sci Rep ; 9(1): 6906, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061408

RESUMO

Current generated spin polarization in topological insulator (TI) surface states due to spin-momentum locking has been detected recently using ferromagnet/tunnel barrier contacts, where the projection of the TI spin onto the magnetization of the ferromagnet is measured as a voltage. However, opposing signs of the spin voltage have been reported, which had been tentatively attributed to the coexistence of trivial two-dimensional electron gas states on the TI surface which may exhibit opposite current-induced polarization than that of the TI Dirac surface states. Models based on electrochemical potential have been presented to determine the sign of the spin voltage expected for the TI surface states. However, these models neglect critical experimental parameters which also affect the sign measured. Here we present a Mott two-spin current resistor model which takes into account these parameters such as spin-dependent interface resistances, and show that such inclusion can lead to a crossing of the voltage potential profiles for the spin-up and spin-down electrons within the channel, which can lead to measured spin voltages of either sign. These findings offer a resolution of the ongoing controversy regarding opposite signs of spin signal reported in the literature, and highlight the importance of including realistic experimental parameters in the model.

6.
Sci Rep ; 8(1): 10265, 2018 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980749

RESUMO

One of the most striking properties of three-dimensional topological insulators (TIs) is spin-momentum locking, where the spin is locked at right angles to momentum and hence an unpolarized charge current creates a net spin polarization. Alternatively, if a net spin is injected into the TI surface state system, it is distinctively associated with a unique carrier momentum and hence should generate a charge accumulation, as in the so-called inverse Edelstein effect. Here using a Fe/Al2O3/BN tunnel barrier, we demonstrate both effects in a single device in Bi2Te3: the electrical detection of the spin accumulation generated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface state system. This work is the first to utilize BN as part of a hybrid tunnel barrier on TI, where we observed a high spin polarization of 93% for the TI surfaces states. The reverse spin-to-charge measurement is an independent confirmation that spin and momentum are locked in the surface states of TI, and offers additional avenues for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the spin system within TI surface states, an important step towards its utilization in TI-based spintronics devices.

7.
J Laryngol Otol ; 132(3): 214-223, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28716164

RESUMO

BACKGROUND: Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described. METHODS: A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined. RESULTS: Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients. CONCLUSION: Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.


Assuntos
Colágeno , Endoscopia/métodos , Procedimentos de Cirurgia Plástica/métodos , Complicações Pós-Operatórias/epidemiologia , Base do Crânio/cirurgia , Adulto , Idoso , Ventriculite Cerebral/epidemiologia , Vazamento de Líquido Cefalorraquidiano/epidemiologia , Encefalocele/epidemiologia , Epistaxe/epidemiologia , Feminino , Humanos , Hemorragias Intracranianas/epidemiologia , Masculino , Meningite/epidemiologia , Pessoa de Meia-Idade , Hemorragia Pós-Operatória/epidemiologia , Estudos Retrospectivos , Convulsões/epidemiologia , Retalhos Cirúrgicos , Infecção da Ferida Cirúrgica/epidemiologia
8.
Nanoscale ; 9(44): 17422-17428, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29104974

RESUMO

The potential for valleytronic operation has stimulated much interest in studying polarized emission from transition metal dichalcogenides. In most studies, however, little regard is given to the character of laser excitation. We measure the circularly polarized photoluminescence of WSe2 monolayers as a function of excitation energy for both continuous-wave (cw) and pulsed laser excitation sources. Using cw excitation, the temperature dependence of the depolarization of the trion follows the same trend as that of the neutral exciton and involves collisional broadening. However, the polarization of the trion is nearly twice the polarization of the neutral exciton at low temperatures. When a pulsed laser with the same average fluence is used as the excitation source, the degrees of polarization become very similar, in stark contrast to the cw results. The difference in polarization behaviors is linked to the different amounts of energy deposited in the system during these measurements for similar average fluences. At a moderate fluence, pulsed excitation also has the potential to fundamentally alter the emission characteristics of WSe2.

9.
Nat Commun ; 7: 13518, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853143

RESUMO

Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states with spin-momentum locking. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion. A bias current is expected to generate spin polarization in both systems, although with different magnitude and sign. Here we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) where Dirac surface states coexist with trivial 2DEG states, and in InAs(001) where only trivial 2DEG states are present. We observe spin polarization arising from spin-momentum locking in both cases, with opposite signs of the measured spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the sign expected for the Dirac surface states, and show that the dominant contribution to the current-generated spin polarization in the TI is from the Dirac surface states.

10.
J Clin Neurosci ; 34: 229-231, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27760694

RESUMO

We report a unique case of neurological deficit from late onset multiple sclerosis (MS), in a 65-year-old woman, after stereotactic radiosurgery (SRS) for trigeminal neuralgia (TN). At 3.5months post-SRS for TN, the patient developed ataxia and left leg paraesthesiae and brain MRI showed altered signal and enhancement in the vicinity of the right trigeminal root entry zone (REZ). The symptoms remitted following treatment with intravenous methylprednisolone, however, 10months post-SRS, the patient developed gait ataxia and left lower limb weakness. MRI showed persistent T2 changes at the REZ and multiple new non-enhancing white matter lesions in the cerebrum and spinal cord; and oligoclonal bands were present in the cerebrospinal fluid but not serum. A diagnosis of multiple sclerosis (MS) was made. This report raises the issue of whether the risk of radiation-induced toxicity is increased in patients with MS treated with SRS. We hypothesise that breakdown in the blood brain barrier secondary to the radiosurgery may have triggered a vigorous local inflammatory response.


Assuntos
Parestesia/diagnóstico por imagem , Lesões por Radiação/diagnóstico por imagem , Radiocirurgia/efeitos adversos , Neuralgia do Trigêmeo/diagnóstico por imagem , Neuralgia do Trigêmeo/radioterapia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/radioterapia , Parestesia/etiologia , Lesões por Radiação/etiologia , Estudos Retrospectivos , Resultado do Tratamento
11.
Sci Rep ; 6: 29533, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404321

RESUMO

The surface states of 3D topological insulators (TIs) exhibit a helical spin texture with spin locked at right angles with momentum. The chirality of this spin texture is expected to invert crossing the Dirac point, a property that has been experimentally observed by optical probes. Here, we directly determine the chirality below the Dirac point by electrically detecting spin-momentum locking in surface states of a p-type TI, Sb2Te3. A current flowing in the Sb2Te3 surface states generates a net spin polarization due to spin-momentum locking, which is electrically detected as a voltage on an Fe/Al2O3 tunnel barrier detector. Measurements of this voltage as a function of current direction and detector magnetization indicate that hole spin-momentum locking follows the right-hand rule, opposite that of electron, providing direct confirmation that the chirality is indeed inverted below Dirac point. The spin signal is linear with current, and exhibits a temperature dependence consistent with the semiconducting nature of the TI film and freeze-out of bulk conduction below 100 K. Our results demonstrate that the chirality of the helical spin texture of TI surface states can be determined electrically, an enabling step in the electrical manipulation of spins in next generation TI-based quantum devices.

12.
Sci Rep ; 6: 25041, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27112195

RESUMO

Single layers of MoS2 and MoSe2 were optically pumped with circularly polarized light and an appreciable polarization was initialized as the pump energy was varied. The circular polarization of the emitted photoluminescence was monitored as a function of the difference between the excitation energy and the A-exciton emission at the K-point of the Brillouin zone. Our results show a threshold of twice the LA phonon energy, specific to the material, above which phonon-assisted intervalley scattering causes depolarization. In both materials this leads to almost complete depolarization within ~100 meV above the threshold energy. We identify the extra kinetic energy of the exciton (independent of whether it is neutral or charged) as the key parameter for presenting a unifying picture of the depolarization process.

13.
Sci Rep ; 6: 18885, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728976

RESUMO

Single layers of transition metal dichalcogenides (TMDs) are direct gap semiconductors with nondegenerate valley indices. An intriguing possibility for these materials is the use of their valley index as an alternate state variable. Several limitations to such a utility include strong intervalley scattering, as well as multiparticle interactions leading to multiple emission channels. We prepare single-layer WS2 films such that the photoluminescence is from either the neutral or charged exciton (trion). After excitation with circularly polarized light, the neutral exciton emission has zero polarization. However, the trion emission has a large polarization (28%) at room temperature. The trion emission also has a unique, non-monotonic temperature dependence that is a consequence of the multiparticle nature of the trion. This temperature dependence enables us to determine that intervalley scattering, electron-hole radiative recombination, and Auger processes are the dominant mechanisms at work in this system. Because this dependence involves trion systems, one can use gate voltages to modulate the polarization (or intensity) emitted from TMD structures.

14.
Nat Commun ; 6: 7541, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26089110

RESUMO

Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

15.
Nat Nanotechnol ; 9(3): 218-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561354

RESUMO

Topological insulators exhibit metallic surface states populated by massless Dirac fermions with spin-momentum locking, where the carrier spin lies in-plane, locked at right angles to the carrier momentum. Here, we show that a charge current produces a net spin polarization via spin-momentum locking in Bi2Se3 films, and this polarization is directly manifested as a voltage on a ferromagnetic contact. This voltage is proportional to the projection of the spin polarization onto the contact magnetization, is determined by the direction and magnitude of the charge current, scales inversely with Bi2Se3 film thickness, and its sign is that expected from spin-momentum locking rather than Rashba effects. Similar data are obtained for two different ferromagnetic contacts, demonstrating that these behaviours are independent of the details of the ferromagnetic contact. These results demonstrate direct electrical access to the topological insulators' surface-state spin system and enable utilization of its remarkable properties for future technological applications.

16.
Nat Nanotechnol ; 8(6): 438-44, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23728074

RESUMO

The ferromagnet/oxide interface is key to developing emerging multiferroic and spintronic technologies with new functionality. Here we probe the Fe/MgO interface magnetization, and identify a new exchange bias phenomenon manifested only in the interface spin system, and not in the bulk. The interface magnetization exhibits a pronounced exchange bias, and the hysteresis loop is shifted entirely to one side of the zero field axis. However, the bulk magnetization does not, in marked contrast to typical systems where exchange bias is manifested in the net magnetization. This reveals the existence of an antiferromagnetic exchange pinning layer at the interface, identified here as FeO patches that exist even for a nominally 'clean' interface. These results demonstrate that atomic moments at the interface are non-collinear with the bulk magnetization, and therefore may affect the net anisotropy or serve as spin scattering sites. We control the exchange bias magnitude by varying the interface oxygen concentration and Fe-O bonding.


Assuntos
Compostos Férricos/química , Óxido de Magnésio/química , Fenômenos Magnéticos , Imãs/química , Anisotropia , Ferro/química , Oxigênio/química , Propriedades de Superfície , Temperatura
17.
Nano Lett ; 13(2): 668-73, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23339527

RESUMO

Two-dimensional materials such as graphene show great potential for future nanoscale electronic devices. The high surface-to-volume ratio is a natural asset for applications such as chemical sensing, where perturbations to the surface resulting in charge redistribution are readily manifested in the transport characteristics. Here we show that single monolayer MoS(2) functions effectively as a chemical sensor, exhibiting highly selective reactivity to a range of analytes and providing sensitive transduction of transient surface physisorption events to the conductance of the monolayer channel. We find strong response upon exposure to triethylamine, a decomposition product of the V-series nerve gas agents. We discuss these results in the context of analyte/sensor interaction in which the analyte serves as either an electron donor or acceptor, producing a temporary charge perturbation of the sensor material. We find highly selective response to electron donors and little response to electron acceptors, consistent with the weak n-type character of our MoS(2). The MoS(2) sensor exhibits a much higher selectivity than carbon nanotube-based sensors.

18.
Nat Nanotechnol ; 7(11): 737-42, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023645

RESUMO

Spin manipulation in a semiconductor offers a new paradigm for device operation beyond Moore's law. Ferromagnetic metals are ideal contacts for spin injection and detection, but the intervening tunnel barrier required to accommodate the large difference in conductivity introduces defects, trapped charge and material interdiffusion, which severely compromise performance. Here, we show that single-layer graphene successfully circumvents the classic issue of conductivity mismatch between a metal and a semiconductor for electrical spin injection and detection, providing a highly uniform, chemically inert and thermally robust tunnel barrier. We demonstrate electrical generation and detection of spin accumulation in silicon above room temperature, and show that the contact resistance-area products are two to three orders of magnitude lower than those achieved with oxide tunnel barriers on silicon substrates with identical doping levels. Our results identify a new route to low resistance-area product spin-polarized contacts, a key requirement for semiconductor spintronic devices that rely on two-terminal magnetoresistance, including spin-based transistors, logic and memory.


Assuntos
Grafite/química , Imãs/química , Semicondutores , Silício/química , Condutividade Elétrica , Desenho de Equipamento , Temperatura
19.
Nat Commun ; 2: 245, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21427716

RESUMO

The International Technology Roadmap for Semiconductors has identified the electron's spin angular momentum as a new state variable that should be explored as an alternative to the electron's charge for use beyond the size scaling of Moore's Law. A major obstacle has been achieving control of the spin variable at temperatures required for practical applications. Here we demonstrate electrical injection, detection and precession of spin accumulation in silicon, the cornerstone material of device technology, at temperatures that easily exceed these requirements. We observe Hanle precession of electron spin accumulation in silicon for a wide range of bias, show that the magnitude of the Hanle signal agrees well with theory, and that the spin lifetime varies with silicon carrier density. These results confirm spin accumulation in the silicon transport channel to 500 K rather than trapping in localized interface states, and enable utilization of the spin variable in practical device applications.


Assuntos
Nanotecnologia/métodos , Semicondutores , Eletricidade , Elétrons , Magnetismo , Metais , Silício , Dióxido de Silício , Temperatura
20.
Tijdschr Psychiatr ; 52(10): 695-704, 2010.
Artigo em Holandês | MEDLINE | ID: mdl-20931483

RESUMO

BACKGROUND: Up till a century ago the classic concepts of cenesthesis and cenesthesiopathy played a major role in the conceptualisation of aberrant somatosensory sensations and disturbances in the sensation of physical existence. Although these concepts are considered obsolete by a number of authors, the conceptual work of the German psychiatrist Gert Huber and the results of modern neuroimaging studies point to the need for a re-evaluation of the concepts cenesthesis and cenesthesiopathy. METHOD: Background information was obtained from PubMed, Embase and the medical historical literature. By way of illustration, two cases are presented: the first is a female patient with a strongly diminished sense of physical existence (hypocenesthesiopathy) and the second is a male patient with such pronounced somatosensory sensations that he believed he was being transformed into a werewolf (hypercenesthesiopathy, clinical lycanthropy). RESULTS: On the basis of the literature and the two case studies, it is shown that the concepts of cenesthesis and cenesthesiopathy may be helpful in the conceptualisation of disorders of the sensation of bodily existence brought about by aberrant somatosensory sensations. CONCLUSION: In the cases of peculiar and unexplained physical symptoms, the cenesthesiopathies should be part of the differential diagnosis. Particularly if patients have longlasting, medication-resistant forms of cenesthesiopathy, it is strongly recommended that such patients undergo neuroimaging and are given an EEG so that treatable somatic conditions can either be demonstrated or ruled out.


Assuntos
Manual Diagnóstico e Estatístico de Transtornos Mentais , Esquizofrenia/classificação , Esquizofrenia/diagnóstico , Adulto , Transtornos Dismórficos Corporais/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA