Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cancers (Basel) ; 15(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37190183

RESUMO

Hormone receptor-positive and HER2-negative (HR+/HER2-; luminal A) tumors are prevalent in breast cancer. Our past studies demonstrated that "TME Stimulation" (estrogen + TNFα + EGF, representing three arms of the tumor microenvironment, TME) has enriched metastasis-forming cancer stem cells (CSCs) in HR+/HER2- human breast cancer cells. Here, following information obtained by RNAseq analyses of TME-stimulated CSCs and Non-CSCs, we found that TME Stimulation has induced the activation of S727-STAT3, Y705-STAT3, STAT1 and p65. Upon TME Stimulation, stattic (STAT3 inhibitor) usage demonstrated that Y705-STAT3 activation negatively controlled CSC enrichment and epithelial-to-mesenchymal transition (EMT) traits, while inducing CXCL8 (IL-8) and PD-L1 expression. However, STAT3 knock-down (siSTAT3) had no effect on these functions; in terms of CSC enrichment, p65 had down-regulatory roles that compensated for the loss of an entire STAT3 protein. Y705-STAT3 and p65 acted additively in reducing CSC enrichment, and Y705A-STAT3 variant + sip65 has enriched chemo-resistant CSCs. Clinical data analyses revealed an inverse correlation between Y705-STAT3 + p65 phosphorylation and CSC signature in luminal A patients, and connection to improved disease course. Overall, we find regulatory roles for Y705-STAT3 and p65 in TME-stimulated HR+/HER2- tumors, with the ability to limit CSC enrichment. These findings raise concerns about using inhibitors of STAT3 and p65 as therapeutic strategies in the clinic.

2.
J Exp Clin Cancer Res ; 41(1): 190, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655310

RESUMO

BACKGROUND: MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5'isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5'isomiRs have not been studied in detail yet. Therefore, this study aims to investigate the functions of miRNAs and their 5'isomiRs. METHODS: The expression of 5'isomiRs was assessed in The Cancer Genome Atlas (TCGA) breast cancer patient dataset. Phenotypic effects of miR-183 overexpression in triple-negative breast cancer (TNBC) cell lines were investigated in vitro and in vivo by quantifying migration, proliferation, tumor growth and metastasis. Direct targeting of E2F1 by miR-183-5p|+2 was validated with a 3'UTR luciferase assay and linked to the phenotypes of isomiR overexpression. RESULTS: TCGA breast cancer patient data indicated that three variants of miR-183-5p are highly expressed and upregulated, namely miR-183-5p|0, miR-183-5p|+1 and miR-183-5p|+2. However, TNBC cell lines displayed reduced proliferation and invasion upon overexpression of pre-miR-183. While invasion was reduced individually by all three isomiRs, proliferation and cell cycle progression were specifically inhibited by overexpression of miR-183-5p|+2. Proteomic analysis revealed reduced expression of E2F target genes upon overexpression of this isomiR, which could be attributed to direct targeting of E2F1, specifically by miR-183-5p|+2. Knockdown of E2F1 partially phenocopied the effect of miR-183-5p|+2 overexpression on cell proliferation and cell cycle. Gene set enrichment analysis of TCGA and METABRIC patient data indicated that the activity of E2F strongly correlated with the expression of miR-183-5p, suggesting transcriptional regulation of the miRNA by a factor of the E2F family. Indeed, in vitro, expression of miR-183-5p was regulated by E2F1. Hence, miR-183-5p|+2 directly targeting E2F1 appears to be part of a negative feedback loop potentially fine-tuning its activity. CONCLUSIONS: This study demonstrates that 5'isomiRs originating from the same arm of the same pre-miRNA (i.e. pre-miR-183-5p) may exhibit different functions and thereby collectively contribute to the same phenotype. Here, one of three isomiRs was shown to counteract expression of the pre-miRNA by negatively regulating a transcriptional activator (i.e. E2F1). We speculate that this might be part of a regulatory mechanism to prevent uncontrolled cell proliferation, which is disabled during cancer progression.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Retroalimentação , Humanos , MicroRNAs/metabolismo , Proteômica , Neoplasias de Mama Triplo Negativas/metabolismo
3.
BMC Cancer ; 21(1): 1296, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863149

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer (BC). Treatment options for TNBC patients are limited and further insights into disease aetiology are needed to develop better therapeutic approaches. microRNAs' ability to regulate multiple targets could hold a promising discovery approach to pathways relevant for TNBC aggressiveness. Thus, we address the role of miRNAs in controlling three signalling pathways relevant to the biology of TNBC, and their downstream phenotypes. METHODS: To identify miRNAs regulating WNT/ß-catenin, c-Met, and integrin signalling pathways, we performed a high-throughput targeted proteomic approach, investigating the effect of 800 miRNAs on the expression of 62 proteins in the MDA-MB-231 TNBC cell line. We then developed a novel network analysis, Pathway Coregulatory (PC) score, to detect miRNAs regulating these three pathways. Using in vitro assays for cell growth, migration, apoptosis, and stem-cell content, we validated the function of candidate miRNAs. Bioinformatic analyses using BC patients' datasets were employed to assess expression of miRNAs as well as their pathological relevance in TNBC patients. RESULTS: We identified six candidate miRNAs coordinately regulating the three signalling pathways. Quantifying cell growth of three TNBC cell lines upon miRNA gain-of-function experiments, we characterised miR-193b as a strong and consistent repressor of proliferation. Importantly, the effects of miR-193b were stronger than chemical inhibition of the individual pathways. We further demonstrated that miR-193b induced apoptosis, repressed migration, and regulated stem-cell markers in MDA-MB-231 cells. Furthermore, miR-193b expression was the lowest in patients classified as TNBC or Basal compared to other subtypes. Gene Set Enrichment Analysis showed that miR-193b expression was significantly associated with reduced activity of WNT/ß-catenin and c-Met signalling pathways in TNBC patients. CONCLUSIONS: Integrating miRNA-mediated effects and protein functions on networks, we show that miRNAs predominantly act in a coordinated fashion to activate or repress connected signalling pathways responsible for metastatic traits in TNBC. We further demonstrate that our top candidate, miR-193b, regulates these phenotypes to an extent stronger than individual pathway inhibition, thus emphasizing that its effect on TNBC aggressiveness is mediated by the coordinated repression of these functionally interconnected pathways.


Assuntos
MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Via de Sinalização Wnt/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metástase Neoplásica , Transfecção
4.
NAR Cancer ; 3(1): zcab007, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34316700

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs with diverse functions in post-transcriptional regulation of gene expression. Sequence and length variants of miRNAs are called isomiRs and can exert different functions compared to their canonical counterparts. The Cancer Genome Atlas (TCGA) provides isomiR-level expression data for patients of various cancer entities collected in a multi-center approach over several years. However, the impact of batch effects within individual cohorts has not been systematically investigated and corrected for before. Therefore, the aim of this study was to identify relevant cohort-specific batch variables and generate batch-corrected isomiR expression data for 16 TCGA cohorts. The main batch variables included sequencing platform, plate, sample purity and sequencing depth. Platform bias was related to certain length and sequence features of individual recurrently affected isomiRs. Furthermore, significant downregulation of reported tumor suppressive isomiRs in lung tumor tissue compared to normal samples was only observed after batch correction, highlighting the importance of working with corrected data. Batch-corrected datasets for all cohorts including quality control are provided as supplement. In summary, this study reveals that batch effects present in the TCGA dataset might mask biologically relevant effects and provides a valuable resource for research on isomiRs in cancer (accessible through GEO: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE164767).

5.
SLAS Discov ; 26(4): 534-546, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33445986

RESUMO

Targeted protein degradation represents an area of great interest, potentially offering improvements with respect to dosing, side effects, drug resistance, and reaching "undruggable" proteins compared with traditional small-molecule therapeutics. A major challenge in the design and characterization of degraders acting as molecular glues is that binding of the molecule to the protein of interest (PoI) is not needed for efficient and selective protein degradation; instead, one needs to understand the interaction with the responsible ligase. Similarly, for proteasome targeting chimeras (PROTACs), understanding the binding characteristics of the PoI alone is not sufficient. Therefore, simultaneously assessing the binding to both PoI and the E3 ligase as well as the resulting degradation profile is of great value. The cellular thermal shift assay (CETSA) is an unbiased cell-based method, designed to investigate the interaction of compounds with their cellular protein targets by measuring compound-induced changes in protein thermal stability. In combination with mass spectrometry (MS), CETSA can simultaneously evaluate compound-induced changes in the stability of thousands of proteins. We have used CETSA MS to profile a number of protein degraders, including molecular glues (e.g., immunomodulatory drugs) and PROTACs, to understand mode of action and to deconvolute off-target effects in intact cells. Within the same experiment, we were able to monitor both target engagement by observing changes in protein thermal stability as well as efficacy by simultaneous assessment of protein abundances. This allowed us to correlate target engagement (i.e., binding to the PoI and ligases) and functional readout (i.e., degrader induced protein degradation).


Assuntos
Ensaios de Triagem em Larga Escala , Agentes de Imunomodulação/farmacologia , Terapia de Alvo Molecular/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/metabolismo , Descoberta de Drogas/métodos , Células Eucarióticas/citologia , Células Eucarióticas/efeitos dos fármacos , Células Eucarióticas/imunologia , Células Eucarióticas/metabolismo , Humanos , Agentes de Imunomodulação/química , Ligantes , Espectrometria de Massas/métodos , Ligação Proteica , Estabilidade Proteica , Proteólise/efeitos dos fármacos , Proteômica/métodos , Proteostase/genética , Temperatura , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
6.
Cancer Immunol Immunother ; 69(7): 1315-1326, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32198536

RESUMO

In view of the relatively limited efficacy of immunotherapies targeting the PD-1-PD-L1 axis in triple-negative breast cancer (TNBC) and of published reports on tumor-promoting roles of TNFR2+ tumor-infiltrating lymphocytes (TNFR2+ TILs), we determined the incidence of TNFR2+ TILs in TNBC patient tumors, their association with disease outcome and relations with PD-1+ TILs. Using a cohort of treatment-naïve TNBC patients with long follow-up (n = 70), we determined the presence of TNFR2+ TILs and PD-1+ TILs by immunohistochemistry. TILs (≥ 1% of cellular mass) and TNFR2+ TILs (≥ 1% of total TILs) were detected in 96% and 74% of tumors, respectively. The presence of TILs at > 5% of tumor cell mass ("Positive TILs"), as well as of positive TNFR2+ TILs (> 5%), was independently associated with good prognosis, and combination of both parameters demonstrated superior outcome relative to their lower levels. PD1+ TILs (> 5/hot spot) were detected in 63% of patients. High levels of PD-1+ TILs (> 20/hot spot) showed an unfavorable disease outcome, and in their presence, the favorable outcome of positive TNFR2+ TILs was ablated. Thus, TNFR2+ TILs are strongly connected to improved prognosis in TNBC; these findings suggest that TNFR2+ TILs have favorable effects in TNBC patients, unlike the tumor-promoting roles attributed to them in other cancer systems. Overall, our observations propose that the TNFR2+ TIL subset should not be targeted in the course of TNBC therapy; rather, its beneficial impacts may become into power when anti-PD-1 regimens-that may potentiate immune activities-are administered to TNBC patients.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Ductal de Mama/mortalidade , Linfócitos do Interstício Tumoral/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal de Mama/imunologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Front Immunol ; 10: 804, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105691

RESUMO

Stromal cells and pro-inflammatory cytokines play key roles in promoting the aggressiveness of triple-negative breast cancers (TNBC; Basal/Basal-like). In our previous study we demonstrated that stimulation of TNBC and mesenchymal stem cells (MSCs) co-cultures by the pro-inflammatory cytokine tumor necrosis factor α (TNFα) has led to increased metastasis-related properties in vitro and in vivo. In this context, elevated release of the pro-metastatic chemokines CXCL8 (IL-8) and CCL5 (RANTES) was noted in TNFα- and interleukin-1ß (IL-1ß)-stimulated TNBC:MSC co-cultures; the process was partly (CXCL8) and entirely (CCL5) dependent on physical contacts between the two cell types. Here, we demonstrate that DAPT, inhibitor of γ-secretase that participates in activation of Notch receptors, inhibited the migration and invasion of TNBC cells that were grown in "Contact" co-cultures with MSCs or with patient-derived cancer-associated fibroblasts (CAFs), in the presence of TNFα. DAPT also inhibited the contact-dependent induction of CXCL8, but not of CCL5, in TNFα- and IL-1ß-stimulated TNBC:MSC/CAF co-cultures; some level of heterogeneity between the responses of different TNBC cell lines was noted, with MDA-MB-231:MSC/CAF co-cultures being the most sensitive to DAPT. Patient dataset studies comparing basal tumors to luminal-A tumors, and mRNA analyses of Notch receptors in TNBC and luminal-A cells pointed at Notch1 as possible mediator of CXCL8 increase in TNFα-stimulated TNBC:stroma "Contact" co-cultures. Accordingly, down-regulation of Notch1 in TNBC cells by siRNA has substantially reduced the contact-dependent elevation in CXCL8 in TNFα- and also in IL-1ß-stimulated TNBC:MSC "Contact" co-cultures. Then, studies in which CXCL8 or p65 (NF-κB pathway) were down-regulated (siRNAs; CRISPR/Cas9) in TNBC cells and/or MSCs, indicated that upon TNFα stimulation of "Contact" co-cultures, p65 was activated and led to CXCL8 production mainly in TNBC cells. Moreover, our findings indicated that when tumor cells interacted with stromal cells in the presence of pro-inflammatory stimuli, TNFα-induced p65 activation has led to elevated Notch1 expression and activation, which then gave rise to elevated production of CXCL8. Overall, tumor:stroma interactions set the stage for Notch1 activation by pro-inflammatory signals, leading to CXCL8 induction and consequently to pro-metastatic activities. These observations may have important clinical implications in designing novel therapy combinations in TNBC.


Assuntos
Regulação Neoplásica da Expressão Gênica , Interleucina-8/genética , Receptores Notch/metabolismo , Células Estromais/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Invasividade Neoplásica , Estadiamento de Neoplasias , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
8.
Front Immunol ; 10: 757, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031757

RESUMO

The tumor microenvironment (TME) plays key roles in promoting disease progression in the aggressive triple-negative subtype of breast cancer (TNBC; Basal/Basal-like). Here, we took an integrative approach and determined the impact of tumor-stroma-inflammation networks on pro-metastatic phenotypes in TNBC. With the TCGA dataset we found that the pro-inflammatory cytokines tumor necrosis factor α (TNFα) and interleukin 1ß (IL-1ß), as well as their target pro-metastatic chemokines CXCL8 (IL-8), CCL2 (MCP-1), and CCL5 (RANTES) were expressed at significantly higher levels in basal patients than luminal-A patients. Then, we found that TNFα- or IL-1ß-stimulated co-cultures of TNBC cells (MDA-MB-231, MDA-MB-468, BT-549) with mesenchymal stem cells (MSCs) expressed significantly higher levels of CXCL8 compared to non-stimulated co-cultures or each cell type alone, with or without cytokine stimulation. CXCL8 was also up-regulated in TNBC co-cultures with breast cancer-associated fibroblasts (CAFs) derived from patients. CCL2 and CCL5 also reached the highest expression levels in TNFα/IL-1ß-stimulated TNBC:MSC/CAF co-cultures. The elevations in CXCL8 and CCL2 expression partly depended on direct physical contacts between the tumor cells and the MSCs/CAFs, whereas CCL5 up-regulation was entirely dependent on cell-to-cell contacts. Supernatants of TNFα-stimulated TNBC:MSC "Contact" co-cultures induced robust endothelial cell migration and sprouting. TNBC cells co-cultured with MSCs and TNFα gained migration-related morphology and potent migratory properties; they also became more invasive when co-cultured with MSCs/CAFs in the presence of TNFα. Using siRNA to CXCL8, we found that CXCL8 was significantly involved in mediating the pro-metastatic activities gained by TNFα-stimulated TNBC:MSC "Contact" co-cultures: angiogenesis, migration-related morphology of the tumor cells, as well as cancer cell migration and invasion. Importantly, TNFα stimulation of TNBC:MSC "Contact" co-cultures in vitro has increased the aggressiveness of the tumor cells in vivo, leading to higher incidence of mice with lung metastases than non-stimulated TNBC:MSC co-cultures. Similar tumor-stromal-inflammation networks established in-culture with luminal-A cells demonstrated less effective or differently-active pro-metastatic functions than those of TNBC cells. Overall, our studies identify novel tumor-stroma-inflammation networks that may promote TNBC aggressiveness by increasing the pro-malignancy potential of the TME and of the tumor cells themselves, and reveal key roles for CXCL8 in mediating these metastasis-promoting activities.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Quimiocinas/metabolismo , Inflamação/metabolismo , Células Estromais/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral , Biomarcadores , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Inflamação/complicações , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais , Neovascularização Patológica/metabolismo , Transdução de Sinais , Células Estromais/patologia , Neoplasias de Mama Triplo Negativas/etiologia , Fator de Necrose Tumoral alfa/metabolismo
9.
Nat Commun ; 10(1): 368, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664630

RESUMO

The molecular pathogenesis of salivary gland acinic cell carcinoma (AciCC) is poorly understood. The secretory Ca-binding phosphoprotein (SCPP) gene cluster at 4q13 encodes structurally related phosphoproteins of which some are specifically expressed at high levels in the salivary glands and constitute major components of saliva. Here we report on recurrent rearrangements [t(4;9)(q13;q31)] in AciCC that translocate active enhancer regions from the SCPP gene cluster to the region upstream of Nuclear Receptor Subfamily 4 Group A Member 3 (NR4A3) at 9q31. We show that NR4A3 is specifically upregulated in AciCCs, and that active chromatin regions and gene expression signatures in AciCCs are highly correlated with the NR4A3 transcription factor binding motif. Overexpression of NR4A3 in mouse salivary gland cells increases expression of known NR4A3 target genes and has a stimulatory functional effect on cell proliferation. We conclude that NR4A3 is upregulated through enhancer hijacking and has important oncogenic functions in AciCC.


Assuntos
Carcinoma de Células Acinares/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Neoplasias das Glândulas Salivares/genética , Proteínas e Peptídeos Salivares/genética , Translocação Genética , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Carcinoma de Células Acinares/metabolismo , Carcinoma de Células Acinares/patologia , Proliferação de Células , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos Par 4/química , Cromossomos Humanos Par 4/metabolismo , Cromossomos Humanos Par 9/química , Cromossomos Humanos Par 9/metabolismo , Estudos de Coortes , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Feminino , Loci Gênicos , Humanos , Masculino , Camundongos , Família Multigênica , Cultura Primária de Células , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Proteínas e Peptídeos Salivares/metabolismo
10.
Nucleic Acids Res ; 45(22): 12681-12699, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29036586

RESUMO

Crosstalk between growth factors (GFs) and steroid hormones recurs in embryogenesis and is co-opted in pathology, but underlying mechanisms remain elusive. Our data from mammary cells imply that the crosstalk between the epidermal GF and glucocorticoids (GCs) involves transcription factors like p53 and NF-κB, along with reduced pausing and traveling of RNA polymerase II (RNAPII) at both promoters and bodies of GF-inducible genes. Essentially, GCs inhibit positive feedback loops activated by GFs and stimulate the reciprocal inhibitory loops. As expected, no alterations in DNA methylation accompany the transcriptional events instigated by either stimulus, but forced demethylation of regulatory regions broadened the repertoire of GF-inducible genes. We report that enhancers, like some promoters, are poised for activation by GFs and GCs. In addition, within the cooperative interface of the crosstalk, GFs enhance binding of the GC receptor to DNA and, in synergy with GCs, promote productive RNAPII elongation. Reciprocally, within the antagonistic interface GFs hyper-acetylate chromatin at unmethylated promoters and enhancers of genes involved in motility, but GCs hypoacetylate the corresponding regions. In conclusion, unmethylated genomic regions that encode feedback regulatory modules and differentially recruit RNAPII and acetylases/deacetylases underlie the crosstalk between GFs and a steroid hormone.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Regiões Promotoras Genéticas/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Metilação de DNA , Dexametasona/farmacologia , Humanos , NF-kappa B/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
J Med Chem ; 60(10): 4279-4292, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28508636

RESUMO

The dCTP pyrophosphatase 1 (dCTPase) is a nucleotide pool "housekeeping" enzyme responsible for the catabolism of canonical and noncanonical nucleoside triphosphates (dNTPs) and has been associated with cancer progression and cancer cell stemness. We have identified a series of piperazin-1-ylpyridazines as a new class of potent dCTPase inhibitors. Lead compounds increase dCTPase thermal and protease stability, display outstanding selectivity over related enzymes and synergize with a cytidine analogue against leukemic cells. This new class of dCTPase inhibitors lays the first stone toward the development of drug-like probes for the dCTPase enzyme.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Piridazinas/química , Piridazinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Leucemia/enzimologia , Simulação de Acoplamento Molecular , Pirofosfatases/metabolismo
13.
Front Immunol ; 8: 479, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28553282

RESUMO

High plasticity is a hallmark of mesenchymal stem cells (MSCs), and as such, their differentiation and activities may be shaped by factors of their microenvironment. Bones, tumors, and cardiomyopathy are examples of niches and conditions that contain MSCs and are enriched with tumor necrosis factor α (TNFα) and transforming growth factor ß1 (TGFß1). These two cytokines are generally considered as having opposing roles in regulating immunity and inflammation (pro- and anti-inflammatory, respectively). Here, we performed global gene expression analysis of human bone marrow-derived MSCs and identified overlap in half of the transcriptional programs that were modified by TNFα and TGFß1. The two cytokines elevated the mRNA expression of soluble factors, including mRNAs of pro-inflammatory mediators. Accordingly, the typical pro-inflammatory factor TNFα prominently induced the protein expression levels of the pro-inflammatory mediators CCL2, CXCL8 (IL-8), and cyclooxygenase-2 (Cox-2) in MSCs, through the NF-κB/p65 pathway. In parallel, TGFß1 did not elevate CXCL8 protein levels and induced the protein expression of CCL2 at much lower levels than TNFα; yet, TGFß1 readily induced Cox-2 and acted predominantly via the Smad3 pathway. Interestingly, combined stimulation of MSCs by TNFα + TGFß1 led to a cooperative induction of all three inflammatory mediators, indicating that TGFß1 functioned as a co-inflammatory cytokine in the presence of TNFα. The cooperative activities of TNFα + TGFß1 that have led to CCL2 and CXCL8 induction were almost exclusively dependent on p65 activation and were not regulated by Smad3 or by the upstream regulator TGFß-activated kinase 1 (TAK1). In contrast, the TNFα + TGFß1-induced cooperative elevation in Cox-2 was mostly dependent on Smad3 (demonstrating cooperativity with activated NF-κB) and was partly regulated by TAK1. Studies with MSCs activated by TNFα + TGFß1 revealed that they release factors that can affect other cells in their microenvironment and induce breast tumor cell elongation, migration, and scattering out of spheroid tumor masses. Thus, our findings demonstrate a TNFα + TGFß1-driven pro-inflammatory fate in MSCs, identify specific molecular mechanisms involved, and propose that TNFα + TGFß1-stimulated MSCs influence the tumor niche. These observations suggest key roles for the microenvironment in regulating MSC functions, which in turn may affect different health-related conditions.

14.
J Med Chem ; 60(5): 2148-2154, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145708

RESUMO

The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolothiadiazoles as potent dCTPase inhibitors. Compounds 16 and 18 display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit-to-lead development.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirofosfatases/antagonistas & inibidores , Tiadiazóis/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular
15.
BMC Genomics ; 17: 566, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27502506

RESUMO

BACKGROUND: miRNAs are small noncoding RNA molecules that play an important role in post-transcriptional regulation of gene expression. Length and/or sequence variants of the same miRNA are termed isomiRs. While most isomiRs are functionally redundant compared to their canonical counterparts, the so-called 5'isomiRs exhibit a shifted 5' end and therefore a shifted seed sequence resulting in a different target spectrum. However, not much is known about the functional relevance of these isoforms. RESULTS: Analysis of miRNA-seq data from breast cancer cell lines identified six pairs of highly expressed miRNAs and associated 5'isomiRs. Among them, hsa-miR-140-3p was of particular interest because its 5'isomiR showed higher expression compared to the canonical miRNA annotated in miRbase. This miRNA has previously been shown to control stemness of breast cancer cells. miRNAseq data of breast cancer patients (TCGA dataset) showed that both the canonical hsa-miR-140-3p and its 5'isomiR-140-3p were highly expressed in patients' tumors compared to normal breast tissue. In the current work, we present the functional characterization of 5'isomiR-140-3p and the cellular phenotypes associated with its overexpression in MCF10A, MDA-MB-468 and MDA-MB-231 cell lines in comparison to the canonical hsa-miR-140-3p. Contrary to the effect of the canonical hsa-miR-140-3p, overexpression of the 5'isomiR-140-3p led to a decrease in cell viability. The latter observation was supported by cell cycle analysis, where the 5'isomiR-140-3p but not the hsa-miR-140-3p caused cell cycle arrest in G0/G1-phase. Additionally, 5'ismoiR-140-3p overexpression was found to cause a decrease in cell migration in the three cell lines. We identified three novel direct target genes of the 5'isomiR-140-3p; COL4A1, ITGA6 and MARCKSL1. Finally, we have shown that knocking down these genes partially phenocopied the effects of the 5'isomiR-140-4p overexpression, where COL4A1 and ITGA6 knockdown led to reduced cell viability and cell cycle arrest, while MARCKSL1 knockdown resulted in a decrease in the migratory potential of cells. CONCLUSIONS: In summary, this work presents evidence that there is functional synergy between the canonical hsa-miR-140-3p and the newly identified 5'isomiR-140-3p in suppressing growth and progression of breast cancer by simultaneously targeting genes related to differentiation, proliferation, and migration.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Ilhas de CpG , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Interferência de RNA , Isoformas de RNA
16.
EMBO Mol Med ; 8(9): 1052-64, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27485121

RESUMO

Long noncoding RNAs (lncRNAs) are emerging as regulators of gene expression in pathogenesis, including cancer. Recently, lncRNAs have been implicated in progression of specific subtypes of breast cancer. One aggressive, basal-like subtype associates with increased EGFR signaling, while another, the HER2-enriched subtype, engages a kin of EGFR Based on the premise that EGFR-regulated lncRNAs might control the aggressiveness of basal-like tumors, we identified multiple EGFR-inducible lncRNAs in basal-like normal cells and overlaid them with the transcriptomes of over 3,000 breast cancer patients. This led to the identification of 11 prognostic lncRNAs. Functional analyses of this group uncovered LINC01089 (here renamed LncRNA Inhibiting Metastasis; LIMT), a highly conserved lncRNA, which is depleted in basal-like and in HER2-positive tumors, and the low expression of which predicts poor patient prognosis. Interestingly, EGF rapidly downregulates LIMT expression by enhancing histone deacetylation at the respective promoter. We also find that LIMT inhibits extracellular matrix invasion of mammary cells in vitro and tumor metastasis in vivo In conclusion, lncRNAs dynamically regulated by growth factors might act as novel drivers of cancer progression and serve as prognostic biomarkers.


Assuntos
Neoplasias da Mama/patologia , Regulação para Baixo , Fator de Crescimento Epidérmico/metabolismo , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/biossíntese , Feminino , Humanos
17.
J Leukoc Biol ; 99(6): 1009-25, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26936935

RESUMO

Chemokine axes have been shown to mediate site-specific metastasis in breast cancer, but their relevance to different subtypes has been hardly addressed. Here, with the focus on the CCR7-CCL21 axis, patient datasets demonstrated that luminal-A tumors express relatively low CCR7 levels compared with more aggressive disease subtypes. Furthermore, lymph node metastasis was not associated with high CCR7 levels in luminal-A patients. The metastatic pattern of luminal-A breast tumors may be influenced by the way luminal-A tumor cells interpret signals provided by factors of the primary tumor microenvironment. Thus, CCR7-expressing human luminal-A cells were stimulated simultaneously by factors representing 3 tumor microenvironment arms typical of luminal-A tumors, hormonal, inflammatory, and growth stimulating: estrogen + TNF-α + epidermal growth factor. Such tumor microenvironment stimulation down-regulated the migration of CCR7-expressing tumor cells toward CCL21 and inhibited the formation of directional protrusions toward CCL21 in a novel 3-dimensional hydrogel system. CCL21-induced migration of CCR7-expressing tumor cells depended on PI3K and MAPK activation; however, when CCR7-expressing cancer cells were prestimulated by tumor microenvironment factors, CCL21 could not effectively activate these signaling pathways. In vivo, pre-exposure of the tumor cells to tumor microenvironment factors has put restraints on CCL21-mediated lymph node-homing cues and shifted the metastatic pattern of CCR7-expressing cells to the aggressive phenotype of dissemination to bones. Several of the aspects were also studied in the CXCR4-CXCL12 system, demonstrating similar patient and in vitro findings. Thus, we provide novel evidence to subtype-specific regulation of the CCR7-CCL21 axis, with more general implications to chemokine-dependent patterns of metastatic spread, revealing differential regulation in the luminal-A subtype.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Quimiocina CCL21/metabolismo , Metástase Linfática/patologia , Receptores CCR7/metabolismo , Microambiente Tumoral , Animais , Linhagem Celular Tumoral , Movimento Celular , Extensões da Superfície Celular/metabolismo , Regulação para Baixo , Endocitose , Ativação Enzimática , Feminino , Humanos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Nat Protoc ; 11(4): 781-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27010756

RESUMO

Regions of insufficient oxygen supply-hypoxia-occur in diverse contexts across biology in both healthy and diseased organisms. The difference in the chemical environment between a hypoxic biological system and one with normal oxygen levels provides an opportunity for targeting compound delivery to hypoxic regions by using bioreductive prodrugs. Here we detail a protocol for the efficient synthesis of (1-methyl-2-nitro-1H-imidazol-5-yl)methanol, which is a key intermediate that can be converted into a range of 1-methyl-2-nitro-1H-imidazole-based precursors of bioreductive prodrugs. We outline methods for attaching the bioreductive group to a range of functionalities, and we discuss the strategy for positioning of the group on the biologically active parent compound. We have used two parent checkpoint kinase 1 (Chk1) inhibitors to exemplify the protocol. The PROCEDURE also describes a suite of reduction assays, of increasing biological relevance, to validate the bioreductive prodrug. These assays are applied to an exemplar compound, CH-01, which is a bioreductive Chk1 inhibitor. This protocol has broad applications to the development of hypoxia-targeted compounds.


Assuntos
Antineoplásicos/síntese química , Inibidores Enzimáticos/síntese química , Hipóxia , Metronidazol/análogos & derivados , Pró-Fármacos/síntese química , Proteínas Quinases/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Inibidores Enzimáticos/farmacologia , Humanos , Metronidazol/síntese química , Metronidazol/farmacologia , Pró-Fármacos/farmacologia , Tecnologia Farmacêutica/métodos
19.
Sci Signal ; 8(368): ra29, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25783158

RESUMO

Growth factors promote tumor growth and metastasis. We found that epidermal growth factor (EGF) induced a set of 22 microRNAs (miRNAs) before promoting the migration of mammary cells. These miRNAs were more abundant in human breast tumors relative to the surrounding tissue, and their abundance varied among breast cancer subtypes. One of these miRNAs, miR-15b, targeted the 3' untranslated region of MTSS1 (metastasis suppressor protein 1). Although xenografts in which MTSS1 was knocked down grew more slowly in mice initially, longer-term growth was unaffected. Knocking down MTSS1 increased migration and Matrigel invasion of nontransformed mammary epithelial cells. Overexpressing MTSS1 in an invasive cell line decreased cell migration and invasiveness, decreased the formation of invadopodia and actin stress fibers, and increased the formation of cellular junctions. In tissues from breast cancer patients with the aggressive basal subtype, an inverse correlation occurred with the high expression of miRNA-15b and the low expression of MTSS1. Furthermore, low abundance of MTSS1 correlated with poor patient prognosis. Thus, growth factor-inducible miRNAs mediate mechanisms underlying the progression of cancer.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Fator de Crescimento Epidérmico/metabolismo , MicroRNAs/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/genética , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , MicroRNAs/genética , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias
20.
Sci Signal ; 8(360): ra7, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25605973

RESUMO

Amplified HER2, which encodes a member of the epidermal growth factor receptor (EGFR) family, is a target of effective therapies against breast cancer. In search for similarly targetable genomic aberrations, we identified copy number gains in SYNJ2, which encodes the 5'-inositol lipid phosphatase synaptojanin 2, as well as overexpression in a small fraction of human breast tumors. Copy gain and overexpression correlated with shorter patient survival and a low abundance of the tumor suppressor microRNA miR-31. SYNJ2 promoted cell migration and invasion in culture and lung metastasis of breast tumor xenografts in mice. Knocking down SYNJ2 impaired the endocytic recycling of EGFR and the formation of cellular lamellipodia and invadopodia. Screening compound libraries identified SYNJ2-specific inhibitors that prevented cell migration but did not affect the related neural protein SYNJ1, suggesting that SYNJ2 is a potentially druggable target to block cancer cell migration.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/genética , Metástase Neoplásica/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Descoberta de Drogas , Receptores ErbB/metabolismo , Feminino , Imunofluorescência , Dosagem de Genes , Humanos , Processamento de Imagem Assistida por Computador , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos SCID , Microscopia Eletrônica de Varredura , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Podossomos/genética , Podossomos/fisiologia , Pseudópodes/genética , Pseudópodes/fisiologia , RNA Interferente Pequeno/genética , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...