Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 209: 109021, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245509

RESUMO

G protein-gated inwardly rectifying potassium (GIRK) channels are one of the main regulators of neuronal excitability. Activation of GIRK channels in the CNS usually leads to postsynaptic inhibition. However, the function of GIRK channels in the presynaptic processes, notably neurotransmitter release form motor nerve terminals, is yet to be comprehensively understood. Here, using electrophysiological and fluorescent approaches, the role of GIRK channels in neurotransmitter release from frog motor nerve terminals was studied. We found that the inhibition of GIRK channels with nanomolar tertiapin-Q synchronized exocytosis events with action potential but suppressed spontaneous and evoked neurotransmitter release, as well as Ca2+ transient and membrane permeability for K+. The action of GIRK channel inhibition on evoked neurotransmission was prevented by selective antagonist of voltage-gated Ca2+ channels of L-type. Furthermore, the effects of muscarinic acetylcholine receptor activation on neurotransmitter release, Ca2+ transient and K+ channel activity were markedly modulated by inhibition of GIRK channels. Thus, at the motor nerve terminals GIRK channels can regulate timing of neurotransmitter release and be a positive modulator of synaptic vesicle exocytosis acting partially via L-type Ca2+ channels. In addition, GIRK channels are key players in a feedback control of neurotransmitter release by muscarinic acetylcholine receptors.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Junção Neuromuscular , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Neurotransmissores/farmacologia , Receptores Muscarínicos , Transmissão Sináptica
2.
J Vis Exp ; (178)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34927611

RESUMO

Estimation of the presynaptic calcium level is a key task in studying synaptic transmission since calcium entry into the presynaptic cell triggers a cascade of events leading to neurotransmitter release. Moreover, changes in presynaptic calcium levels mediate the activity of many intracellular proteins and play an important role in synaptic plasticity. Studying calcium signaling is also important for finding ways to treat neurodegenerative diseases. The neuromuscular junction is a suitable model for studying synaptic plasticity, as it has only one type of neurotransmitter. This article describes the method for loading a calcium-sensitive dye through the cut nerve bundle into the mice's motor nerve endings. This method allows the estimation of all parameters related to intracellular calcium changes, such as basal calcium level and calcium transient. Since the influx of calcium from the cell exterior into the nerve terminals and its binding/unbinding to the calcium-sensitive dye occur within the range of a few milliseconds, a speedy imaging system is required to record these events. Indeed, high-speed cameras are commonly used for the registration of fast calcium changes, but they have low image resolution parameters. The protocol presented here for recording calcium transient allows extremely good spatial-temporal resolution provided by confocal microscopy.


Assuntos
Cálcio , Junção Neuromuscular , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Camundongos , Microscopia Confocal , Junção Neuromuscular/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica
3.
Microsc Microanal ; 26(2): 204-210, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32115011

RESUMO

Here, we describe a method of acquisition of fast fluorescent signals with the help of the laser scanning confocal microscope (LSCM). Our method permits an increase in the temporal resolution of acquired signals. The method is based on LSCM recordings of fast fluorescent signals with the shortest achievable time sweep, which are performed with the help of a proprietary algorithm. A series of recordings is made in multiple steps; at each step, the fluorescent signal is incremented by a time interval smaller than the time sweep of the frame of LSCM. The size of the increment determines the achievable time resolution. The convolution of the recorded images results in a signal with the temporal resolution determined by the chosen time increment. This method was applied to register the change in fluorescence (calcium transient) of calcium dye preloaded into peripheral nerve endings by electrical stimulation of the motor nerve. Calculated parameters of the calcium transient were identical to the parameters obtained earlier with the help of a high-speed camera and photodiode. We conclude that the method described here can be applied for the registration of fast fluorescent signals by LSCM with a high spatial and temporal resolution.

4.
Neuroscience ; 404: 91-101, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738855

RESUMO

Septins (Sept) are highly conserved Guanosine-5'-triphosphate (GTP)-binding cytoskeletal proteins involved in neuronal signaling in the central nervous system but their involvement in signal transmission in peripheral synapses remains unclear. Sept5 and Sept9 proteins were detected in mouse peripheral neuromuscular junctions by immunofluorescence with a greater degree of co-localization with presynaptic than postsynaptic membranes. Preincubation of neuromuscular junction preparations with the inhibitor of Sept dynamics, forchlorfenuron (FCF), decreased co-localization of Sept with presynaptic membranes. FCF introduced ex vivo or in vivo had no effect on the amplitude of the spontaneous endplate currents (EPCs), indicating the absence of postsynaptic effects of FCF. However, FCF decreased acetylcholine (ACh) quantal release in response to nerve stimulation, reduced the amplitude of evoked quantal currents and decreased the number of quanta with long synaptic delays, demonstrating the presynaptic action of FCF. Nevertheless, FCF had no effect on the amplitude of calcium transient in nerve terminals, as detected by calcium-sensitive dye, and slightly decreased the ratio of the second response amplitude to the first one in paired-pulse experiments. These results suggest that FCF-induced decrease in ACh quantal secretion is not due to a decrease in Ca2+ influx but is likely related to the impairment of later stages occurring after Ca2+ entry, such as trafficking, docking or membrane fusion of synaptic vesicles. Therefore, Sept9 and Sept5 are abundantly expressed in presynaptic membranes, and disruption of Sept dynamics suppresses the evoked synchronous and delayed asynchronous quantal release of ACh, strongly suggesting an important role of Sept in the regulation of neurotransmission in peripheral synapses.


Assuntos
Potencial Evocado Motor/fisiologia , Junção Neuromuscular/patologia , Septinas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Diafragma/inervação , Diafragma/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Nervo Frênico/fisiologia
5.
J Vis Exp ; (125)2017 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-28715368

RESUMO

One of the most feasible methods of measuring presynaptic calcium levels in presynaptic nerve terminals is optical recording. It is based on using calcium-sensitive fluorescent dyes that change their emission intensity or wavelength depending on the concentration of free calcium in the cell. There are several methods used to stain cells with calcium dyes. Most common are the processes of loading the dyes through a micropipette or pre-incubating with the acetoxymethyl ester forms of the dyes. However, these methods are not quite applicable to neuromuscular junctions (NMJs) due to methodological issues that arise. In this article, we present a method for loading a calcium-sensitive dye through the frog nerve stump of the frog nerve into the nerve endings. Since entry of external calcium into nerve terminals and the subsequent binding to the calcium dye occur within the millisecond time-scale, it is necessary to use a fast imaging system to record these interactions. Here, we describe a protocol for recording the calcium transient with a fast CCD camera.


Assuntos
Cálcio/metabolismo , Terminações Nervosas/metabolismo , Junção Neuromuscular/fisiologia , Animais , Rana clamitans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA