Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783572

RESUMO

BACKGROUND AND PURPOSE: Monoclonal antibodies (Ab) represent the fastest growing drug class. Knowledge of the biophysical parameters (kon , koff and KD ) that dictate Ab:receptor interaction is critical during the drug discovery process. However, with the increasing complexity of Ab formats and their targets, it became apparent that existing technologies present limitations and are not always suitable to determine these parameters. Therefore, novel affinity determination methods represent an unmet assay need. EXPERIMENTAL APPROACH: We developed a pre-equilibrium kinetic exclusion assay using recent mathematical advances to determine the kon , koff and KD of monoclonal Ab:receptor interactions on living cells. The assay is amenable to all human IgG1 and rabbit Abs. KEY RESULTS: Using our novel assay, we demonstrated for several monoclonal Ab:receptor pairs that the calculated kinetic rate constants were comparable with orthogonal methods that were lower throughput or more resource consuming. We ran simulations to predict the critical conditions to improve the performance of the assays. We further showed that this method could successfully be applied to both suspension and adherent cells. Finally, we demonstrated that kon and koff , but not KD , correlate with in vitro potency for a panel of monoclonal Abs. CONCLUSIONS AND IMPLICATIONS: Our novel assay has the potential to systematically probe binding kinetics of monoclonal Abs to cells and can be incorporated in a screening cascade to identify new therapeutic candidates. Wide-spread adoption of pre-equilibrium assays using physiologically relevant systems will lead to a more holistic understanding of how Ab binding kinetics influence their potency.

2.
J Biol Chem ; 299(5): 104685, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031819

RESUMO

The exquisite specificity, natural biological functions, and favorable development properties of antibodies make them highly effective agents as drugs. Monoclonal antibodies are particularly strong as inhibitors of systemically accessible targets where trough-level concentrations can sustain full target occupancy. Yet beyond this pharmacologic wheelhouse, antibodies perform suboptimally for targets of high abundance and those not easily accessible from circulation. Fundamentally, this restraint on broader application is due largely to the stoichiometric nature of their activity-one drug molecule is generally able to inhibit a maximum of two target molecules at a time. Enzymes in contrast are able to catalytically turnover multiple substrates, making them a natural sub-stoichiometric solution for targets of high abundance or in poorly accessible sites of action. However, enzymes have their own limitations as drugs, including, in particular, the polypharmacology and broad specificity often seen with native enzymes. In this study, we introduce antibody-guided proteolytic enzymes to enable selective sub-stoichiometric turnover of therapeutic targets. We demonstrate that antibody-mediated substrate targeting can enhance enzyme activity and specificity, with proof of concept for two challenging target proteins, amyloid-ß and immunoglobulin G. This work advances a new biotherapeutic platform that combines the favorable properties of antibodies and proteolytic enzymes to more effectively suppress high-bar therapeutic targets.


Assuntos
Anticorpos Monoclonais , Terapia Biológica , Endopeptidases , Peptídeo Hidrolases , Imunoglobulina G , Peptídeo Hidrolases/metabolismo , Terapia Biológica/métodos
3.
Mol Pharm ; 15(10): 4529-4537, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118239

RESUMO

A critical part of the clinical development path for a therapeutic antibody involves evaluating the physical and chemical stability of candidate molecules throughout the manufacturing process. In particular, the risks of chemical liabilities that can impact antigen binding, such as deamidation, oxidation, and isomerization in the antibody CDR sequences, need to be controlled through formulation development or eliminated by replacing the amino acid motif displaying the chemical instability. Commonly, the antibody CDR sequence contains multiple sequence motifs (potential hotspots) for chemical instability. However, only a subset of these motifs results in actual chemical modification, and thus, experimental assessment of the extent of instability is necessary to identify positions for potential sequence engineering. Ideally, this information should be available prior to antibody humanization at the stage of parental rodent antibody identification. Early knowledge of liabilities allows for ranking of clones or the mitigation of liabilities by concurrent engineering with the antibody humanization process instead of time-consuming sequential activities. However, concurrent engineering of chemical liabilities and humanization requires translatability of the chemical modifications from the rodent parental antibody to the humanized. We experimentally compared the stability of all sequence motifs by mass spectrometric peptide mapping between the rodent parental antibody and the final humanized antibody and observed a linear correlation. These results have enabled a streamlined developability assessment process for therapeutic antibodies from lead discovery to clinical development.


Assuntos
Anticorpos/imunologia , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Desaminação , Concentração de Íons de Hidrogênio , Isomerismo , Metionina/química , Camundongos , Oxirredução , Espectrometria de Massas em Tandem , Triptofano/química
4.
Protein Eng Des Sel ; 30(9): 627-637, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985411

RESUMO

Bispecific antibodies offer a clinically validated platform for drug discovery. In generating functionally active bispecific antibodies, it is necessary to identify a unique parental antibody pair to merge into a single molecule. However, technologies that allow high-throughput production of bispecific immunoglobulin Gs (BsIgGs) for screening purposes are limited. Here, we describe a novel bispecific antibody format termed tethered-variable CLBsIgG (tcBsIgG) that allows robust production of intact BsIgG in a single cell line, concurrently ensuring cognate light chain pairing and preserving key antibody structural and functional properties. This technology is broadly applicable in the generation of BsIgG from a variety of antibody isotypes, including human BsIgG1, BsIgG2 and BsIgG4. The practicality of the tcBsIgG platform is demonstrated by screening BsIgGs generated from FGF21-mimetic anti-Klotho-ß agonistic antibodies in a combinatorial manner. This screen identified multiple biepitopic combinations with enhanced agonistic activity relative to the parental monoclonal antibodies, thereby demonstrating that biepitopic antibodies can acquire enhanced functionality compared to monospecific parental antibodies. By design, the tcBsIgG format is amenable to high-throughput production of large panels of bispecific antibodies and thus can facilitate the identification of rare BsIgG combinations to enable the discovery of molecules with improved biological function.


Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Monoclonais/biossíntese , Ensaios de Triagem em Larga Escala , Imunoglobulina G/biossíntese , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Células CHO , Clonagem Molecular , Cricetulus , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/imunologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Proteínas Klotho , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Biol Chem ; 292(9): 3900-3908, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28077575

RESUMO

The antibody Fc region regulates antibody cytotoxic activities and serum half-life. In a therapeutic context, however, the cytotoxic effector function of an antibody is often not desirable and can create safety liabilities by activating native host immune defenses against cells expressing the receptor antigens. Several amino acid changes in the Fc region have been reported to silence or reduce the effector function of antibodies. These earlier studies focused primarily on the interaction of human antibodies with human Fc-γ receptors, and it remains largely unknown how such changes to Fc might translate to the context of a murine antibody. We demonstrate that the commonly used N297G (NG) and D265A, N297G (DANG) variants that are efficacious in attenuating effector function in primates retain potent complement activation capacity in mice, leading to safety liabilities in murine studies. In contrast, we found an L234A, L235A, P329G (LALA-PG) variant that eliminates complement binding and fixation as well as Fc-γ-dependent, antibody-dependent, cell-mediated cytotoxity in both murine IgG2a and human IgG1. These LALA-PG substitutions allow a more accurate translation of results generated with an "effectorless" antibody between mice and primates. Further, we show that both human and murine antibodies containing the LALA-PG variant have typical pharmacokinetics in rodents and retain thermostability, enabling efficient knobs-into-holes bispecific antibody production and a robust path to generating highly effector-attenuated bispecific antibodies for preclinical studies.


Assuntos
Anticorpos Biespecíficos/imunologia , Imunoglobulina G/química , Animais , Formação de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Complemento C1q/imunologia , Cricetinae , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Glicosilação , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/genética , Camundongos , Conformação Proteica , Receptores de IgG/metabolismo , Temperatura
6.
MAbs ; 8(8): 1536-1547, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606571

RESUMO

Antigen-binding fragments (Fab) and F(ab')2 antibodies serve as alternative formats to full-length anti-bodies in therapeutic and immune assays. They provide the advantage of small size, short serum half-life, and lack of effector function. Several proteases associated with invasive diseases are known to cleave antibodies in the hinge-region, and this results in anti-hinge antibodies (AHA) toward the neoepitopes. The AHA can act as surrogate Fc and reintroduce the properties of the Fc that are otherwise lacking in antibody fragments. While this response is desired during the natural process of fighting disease, it is commonly unwanted for therapeutic antibody fragments. In our study, we identify a truncation in the lower hinge region of the antibody that maintains efficient proteolytic cleavage by IdeS protease. The resulting neoepitope at the F(ab')2 C-terminus does not have detectable binding of pre-existing AHA, providing a practical route to produce F(ab')2 in vitro by proteolytic digestion when the binding of pre-existing AHA is undesired. We extend our studies to the upper hinge region of the antibody and provide a detailed analysis of the contribution of C-terminal residues of the upper hinge of human IgG1, IgG2 and IgG4 to pre-existing AHA reactivity in human serum. While no pre-existing antibodies are observed toward the Fab of IgG2 and IgG4 isotype, a significant response is observed toward most residues of the upper hinge of human IgG1. We identify a T225L variant and the natural C-terminal D221 as solutions with minimal serum reactivity. Our work now enables the production of Fab and F(ab')2 for therapeutic and diagnostic immune assays that have minimal reactivity toward pre-existing AHA.


Assuntos
Autoanticorpos/imunologia , Epitopos de Linfócito B/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Anticorpos Monoclonais , Especificidade de Anticorpos , Mapeamento de Epitopos , Humanos , Engenharia de Proteínas
7.
Mol Pharm ; 13(9): 2996-3003, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27244474

RESUMO

We have developed a tool Fab fragment of a rabbit monoclonal antibody that is useful for early evaluation in rabbit models of technologies for long acting delivery (LAD) of proteins to the eye. Using this Fab we show that vitreal clearance can be slowed through increased hydrodynamic size. Fab (G10rabFab) and Fab' (G10rabFab') fragments of a rabbit monoclonal antibody (G10rabIgG) were expressed in Chinese hamster ovary (CHO) cells and purified using antigen-based affinity chromatography. G10rabFab retains antigen-binding upon thermal stress (37 °C) for 8 weeks in phosphate-buffered saline (PBS) and can be detected in rabbit tissues using an antigen-based ELISA. Hydrodynamic radius, measured using quasi-elastic light scattering (QELS), was increased through site-specific modification of the G10rabFab' free cysteine with linear methoxy-polyethylene glycol(PEG)-maleimide of 20000 or 40000 molecular weight. Pharmacokinetic studies upon intravitreal dosing in New Zealand white rabbits were conducted on the G10rabFab and PEGylated G10rabFab'. Results of single and multidose pharmacokinetic experiments yield reproducible results and a vitreal half-life for G10rabFab of 3.2 days. Clearance from the eye is slowed through increased hydrodynamic size, with vitreal half-life showing a linear dependence on hydrodynamic radius (RH). A linear dependence of vitreal half-life on RH suggests that molecule diffusivity makes an important contribution to vitreal clearance. A method for prediction of vitreal half-life from RH measurements is proposed.


Assuntos
Anticorpos Monoclonais/farmacocinética , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Células CHO , Cricetulus , Ensaio de Imunoadsorção Enzimática , Hidrodinâmica , Injeções Intravítreas , Cinética , Polietilenoglicóis/química , Coelhos
8.
Invest Ophthalmol Vis Sci ; 56(9): 5390-400, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26275136

RESUMO

PURPOSE: To design and select the next generation of ocular therapeutics, we performed a comprehensive ocular and systemic pharmacokinetic (PK) analysis of a variety of antibodies and antibody fragments, including a novel-designed bispecific antibody. METHODS: Molecules were administrated via intravitreal (IVT) or intravenous (IV) injections in rabbits, and antibody concentrations in each tissue were determined by ELISA. A novel mathematical model was developed to quantitate the structure-PK relationship. RESULTS: After IVT injection, differences in vitreal half-life observed across all molecules ranged between 3.2 and 5.2 days. Modification or elimination of the fragment crystallizable (Fc) region reduced serum half-life from 9 days for the IgG to 5 days for the neonatal Fc receptor (FcRn) null mAb, to 3.1 to 3.4 days for the other formats. The F(ab')2 was the optimal format for ocular therapeutics with comparable vitreal half-life to full-length antibodies, but with minimized systemic exposure. Concomitantly, the consistency among mathematical model predictions and observed data validated the model for future PK predictions. In addition, we showed a novel design to develop bispecific antibodies, here with activity targeting multiple angiogenesis pathways. CONCLUSIONS: We demonstrated that protein molecular weight and Fc region do not play a critical role in ocular PK, as they do systemically. Moreover, the mathematical model supports the selection of the "ideal therapeutic" by predicting ocular and systemic PK of any antibody format for any dose regimen. These findings have important implications for the design and selection of ocular therapeutics according to treatment needs, such as maximizing ocular half-life and minimizing systemic exposure.


Assuntos
Anticorpos Monoclonais/farmacocinética , Anticorpos/imunologia , Desenho de Fármacos , Oftalmopatias/tratamento farmacológico , Olho/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Afinidade de Anticorpos , Oftalmopatias/imunologia , Oftalmopatias/metabolismo , Injeções Intravítreas , Masculino , Ligação Proteica , Coelhos
9.
EBioMedicine ; 2(7): 730-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26288846

RESUMO

Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/ßKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/ßKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/ßKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/ßKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/ßKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin.


Assuntos
Tecido Adiposo Marrom/metabolismo , Anticorpos Biespecíficos/farmacologia , Insulina/farmacologia , Proteínas de Membrana/agonistas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/agonistas , Adiponectina/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Linhagem Celular , Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Células HEK293 , Humanos , Proteínas Klotho , Macaca fascicularis , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ligação Proteica/efeitos dos fármacos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Termogênese/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
10.
PLoS One ; 7(4): e35844, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22563408

RESUMO

Attempts to express eukaryotic multi-spanning membrane proteins at high-levels have been generally unsuccessful. In order to investigate the cause of this limitation and gain insight into the rate limiting processes involved, we have analyzed the effect of translation levels on the expression of several human membrane proteins in Escherichia coli (E. coli). These results demonstrate that excessive translation initiation rates of membrane proteins cause a block in protein synthesis and ultimately prevent the high-level accumulation of these proteins. Moderate translation rates allow coupling of peptide synthesis and membrane targeting, resulting in a significant increase in protein expression and accumulation over time. The current study evaluates four membrane proteins, CD20 (4-transmembrane (TM) helixes), the G-protein coupled receptors (GPCRs, 7-TMs) RA1c and EG-VEGFR1, and Patched 1 (12-TMs), and demonstrates the critical role of translation initiation rates in the targeting, insertion and folding of integral membrane proteins in the E. coli membrane.


Assuntos
Proteínas de Membrana/biossíntese , Antígenos CD20/genética , Antígenos CD20/metabolismo , Escherichia coli/metabolismo , Humanos , Proteínas de Membrana/genética , Iniciação Traducional da Cadeia Peptídica , Receptores Acoplados a Proteínas G/biossíntese , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
11.
Sci Transl Med ; 3(113): 113ra126, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22174314

RESUMO

Clinical use of recombinant fibroblast growth factor 21 (FGF21) for the treatment of type 2 diabetes and other disorders linked to obesity has been proposed; however, its clinical development has been challenging owing to its poor pharmacokinetics. Here, we describe an alternative antidiabetic strategy using agonistic anti-FGFR1 (FGF receptor 1) antibodies (R1MAbs) that mimic the metabolic effects of FGF21. A single injection of R1MAb into obese diabetic mice induced acute and sustained amelioration of hyperglycemia, along with marked improvement in hyperinsulinemia, hyperlipidemia, and hepatosteatosis. R1MAb activated the mitogen-activated protein kinase pathway in adipose tissues, but not in liver, and neither FGF21 nor R1MAb improved glucose clearance in lipoatrophic mice, which suggests that adipose tissues played a central role in the observed metabolic effects. In brown adipose tissues, both FGF21 and R1MAb induced phosphorylation of CREB (cyclic adenosine 5'-monophosphate response element-binding protein), and mRNA expression of PGC-1α (peroxisome proliferator-activated receptor-γ coactivator 1α) and the downstream genes associated with oxidative metabolism. Collectively, we propose FGFR1 in adipose tissues as a major functional receptor for FGF21, as an upstream regulator of PGC-1α, and as a compelling target for antibody-based therapy for type 2 diabetes and other obesity-associated disorders.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Diabetes Mellitus Tipo 2/terapia , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Distribuição Tecidual , Transativadores/metabolismo , Fatores de Transcrição
12.
J Immunol ; 176(4): 2069-73, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16455961

RESUMO

Chemokines play an important role in the immune system by regulating cell trafficking in homeostasis and inflammation. In this study, we report the identification and characterization of a novel cytokine-like protein, DMC (dendritic cell and monocyte chemokine-like protein), which attracts dendritic cells and monocytes. The key to the identification of this putative new chemokine was the application of threading techniques to its uncharacterized sequence. Based on our studies, DMC is predicted to have an IL-8-like chemokine fold and to be structurally and functionally related to CXCL8 and CXCL14. Consistent with our predictions, DMC induces migration of monocytes and immature dendritic cells. Expression studies show that DMC is constitutively expressed in lung, suggesting a potential role for DMC in recruiting monocytes and dendritic cells from blood into lung parenchyma.


Assuntos
Movimento Celular , Quimiocinas/química , Quimiocinas/metabolismo , Células Dendríticas/citologia , Monócitos/citologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Quimiocinas/imunologia , Quimiocinas CXC , Células Dendríticas/química , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Monócitos/química , Monócitos/imunologia , Especificidade de Órgãos , Dobramento de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
13.
Biochemistry ; 44(46): 15150-8, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16285718

RESUMO

The integral membrane protein CD20 has been identified as an important therapeutic target in the treatment of non-Hodgkin's lymphoma (NHL). CD20 binding of many antibodies including the therapeutic antibody, rituximab, has been shown to be critically dependent upon the conformation of a loop structure between the third and fourth helical transmembrane regions. In this work, human and murine CD20 proteins expressed in Escherichia coli are shown to be localized with the cell membrane and are purified in nondenaturing detergent solutions. The purified human and murine CD20 proteins have a substantial helical structure as measured by circular dichroism spectroscopy. Only small changes in the secondary structure are observed following the reduction of CD20, with the addition of SDS, or after heating. The rituximab antibody is shown to bind to purified human CD20 with nanomolar affinity. Rituximab binding is abolished by reduction and alkylation of CD20, with data consistent with the proposed antibody epitope being within the disulfide-bonded loop formed between cysteine residues 167 and 183. Disulfide-bond-dependent antibody binding is partially recovered following reoxidation of reduced CD20. Antibody binding is unaffected by mutations of cysteines proposed to be in the intracellular domain of CD20. The affinities of intact rituximab and its Fab fragment to the isolated and purified CD20 are similar to the observed affinity of rituximab Fab for CD20 on the surface of B cells. However, the intact rituximab antibody shows much higher affinity for CD20 on B cells. This suggests that B cells display CD20 in such a way that allows for marked avidity effects to be observed, perhaps through cross-linking of CD20 monomers into lipid rafts, which limits receptor diffusion in the membrane. Such cross-linking may play a role in partitioning CD20 into lipid rafts and in enhancing antibody-dependent B-cell depletion activities of rituximab and other therapeutic anti-CD20 antibodies.


Assuntos
Antígenos CD20/química , Antígenos CD20/isolamento & purificação , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Murinos , Reações Antígeno-Anticorpo , Antígenos CD20/metabolismo , Linfócitos B/química , Linfócitos B/metabolismo , Membrana Celular/química , Dicroísmo Circular , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Rituximab
14.
Genome Res ; 13(10): 2265-70, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12975309

RESUMO

A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries. A third approach surveyed ESTs for protein sequence similarity to a set of known receptors and their ligands with the BLAST algorithm. Finally, both signal-sequence prediction algorithms and BLAST were used to identify single exons of potential genes from within human genomic sequence. The isolation of full-length cDNA clones for each of these candidate genes resulted in the identification of >1000 novel proteins. A total of 256 of these cDNAs are still novel, including variants and novel genes, per the most recent GenBank release version. The success of this large-scale effort was assessed by a bioinformatics analysis of the proteins through predictions of protein domains, subcellular localizations, and possible functional roles. The SPDI collection should facilitate efforts to better understand intercellular communication, may lead to new understandings of human diseases, and provides potential opportunities for the development of therapeutics.


Assuntos
Moléculas de Adesão Celular Neuronais , Biologia Computacional/métodos , Proteínas de Membrana/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Ligadas por GPI , Biblioteca Gênica , Humanos , Dados de Sequência Molecular , Valor Preditivo dos Testes , Sinais Direcionadores de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...