Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Dev Dis ; 8(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924051

RESUMO

Cardiomyopathies are a group of heterogeneous diseases that affect the muscles of the heart, leading to early morbidity and mortality in young and adults. Genetic forms of cardiomyopathy are caused predominantly by mutations in structural components of the cardiomyocyte sarcomeres, the contractile units of the heart, which includes cardiac Troponin T (TnT). Here, we generated mutations with CRISPR/Cas9 technology in the zebrafish tnnt2a gene, encoding cardiac TnT, at a mutational "hotspot" site to establish a zebrafish model for genetic cardiomyopathies. We found that a heterozygous tnnt2a mutation deleting Arginine at position 94 and Lysine at position 95 of TnT causes progressive cardiac structural changes resulting in heart failure. The cardiac remodeling is presented by an enlarged atrium, decreased ventricle size, increased myocardial stress as well as increased fibrosis. As early as five days post fertilization, larvae carrying the TnT RK94del mutation display diastolic dysfunction and impaired calcium dynamics related to increased Ca2+ sensitivity. In conclusion, adult zebrafish with a heterozygous TnT-RK94del mutation develop cardiomyopathy as seen in patients with TnT mutations and therefore represent a promising model to study disease mechanisms and to screen for putative therapeutic compounds.

2.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33597309

RESUMO

The establishment of cardiac function in the developing embryo is essential to ensure blood flow and, therefore, growth and survival of the animal. The molecular mechanisms controlling normal cardiac rhythm remain to be fully elucidated. From a forward genetic screen, we identified a unique mutant, grime, that displayed a specific cardiac arrhythmia phenotype. We show that loss-of-function mutations in tmem161b are responsible for the phenotype, identifying Tmem161b as a regulator of cardiac rhythm in zebrafish. To examine the evolutionary conservation of this function, we generated knockout mice for Tmem161b. Tmem161b knockout mice are neonatal lethal and cardiomyocytes exhibit arrhythmic calcium oscillations. Mechanistically, we find that Tmem161b is expressed at the cell membrane of excitable cells and live imaging shows it is required for action potential repolarization in the developing heart. Electrophysiology on isolated cardiomyocytes demonstrates that Tmem161b is essential to inhibit Ca2+ and K+ currents in cardiomyocytes. Importantly, Tmem161b haploinsufficiency leads to cardiac rhythm phenotypes, implicating it as a candidate gene in heritable cardiac arrhythmia. Overall, these data describe Tmem161b as a highly conserved regulator of cardiac rhythm that functions to modulate ion channel activity in zebrafish and mice.


Assuntos
Arritmias Cardíacas/genética , Frequência Cardíaca/genética , Proteínas de Membrana/fisiologia , Mutação , Miócitos Cardíacos/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Potenciais de Ação/genética , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Sequência de Bases , Cálcio/metabolismo , Sequência Conservada , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Coração/embriologia , Coração/fisiopatologia , Transporte de Íons , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Organogênese/genética , Periodicidade , Potássio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Dev Biol ; 471: 106-118, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309949

RESUMO

Adult zebrafish are frequently described to be able to "completely" regenerate the heart. Yet, the extent to which cardiomyocytes lost to injury are replaced is unknown, since existing evidence for cardiomyocyte proliferation is indirect or non-quantitative. We established stereological methods to quantify the number of cardiomyocytes at several time-points post cryoinjury. Intriguingly, after cryoinjuries that killed about 1/3 of the ventricular cardiomyocytes, pre-injury cardiomyocyte numbers were restored already within 30 days. Yet, many hearts retained small residual scars, and a subset of cardiomyocytes bordering these fibrotic areas remained smaller, lacked differentiated sarcomeric structures, and displayed defective calcium signaling. Thus, a subset of regenerated cardiomyocytes failed to fully mature. While lineage-tracing experiments have shown that regenerating cardiomyocytes are derived from differentiated cardiomyocytes, technical limitations have previously made it impossible to test whether cardiomyocyte trans-differentiation contributes to regeneration of non-myocyte cell lineages. Using Cre responder lines that are expressed in all major cell types of the heart, we found no evidence for cardiomyocyte transdifferentiation into endothelial, epicardial, fibroblast or immune cell lineages. Overall, our results imply a refined answer to the question whether zebrafish can completely regenerate the heart: in response to cryoinjury, preinjury cardiomyocyte numbers are indeed completely regenerated by proliferation of lineage-restricted cardiomyocytes, while restoration of cardiomyocyte differentiation and function, as well as resorption of scar tissue, is less robustly achieved.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Peixe-Zebra/metabolismo , Animais , Fibrose , Miocárdio/patologia , Miócitos Cardíacos/patologia
4.
EMBO J ; 40(5): e105912, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33283287

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.


Assuntos
Células Epiteliais Alveolares/metabolismo , COVID-19/metabolismo , Modelos Biológicos , Organoides/metabolismo , SARS-CoV-2/fisiologia , Replicação Viral , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/virologia , Chlorocebus aethiops , Regulação da Expressão Gênica , Humanos , Interferon Tipo I/biossíntese , Interferons/biossíntese , Organoides/patologia , Organoides/virologia , Células Vero , Interferon lambda
5.
BMC Cancer ; 20(1): 542, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522170

RESUMO

BACKGROUND: Novel biomarkers are required to discern between breast tumors that should be targeted for treatment from those that would never become clinically apparent and/or life threatening for patients. Moreover, therapeutics that specifically target breast cancer (BC) cells with tumor-initiating capacity to prevent recurrence are an unmet need. We investigated the clinical importance of LGR5 in BC and ductal carcinoma in situ (DCIS) to explore LGR5 as a biomarker and a therapeutic target. METHODS: We stained BC (n = 401) and DCIS (n = 119) tissue microarrays with an antibody against LGR5. We examined an LGR5 knockdown ER- cell line that was orthotopically transplanted and used for in vitro colony assays. We also determined the tumor-initiating role of Lgr5 in lineage-tracing experiments. Lastly, we transplanted ER- patient-derived xenografts into mice that were subsequently treated with a LGR5 antibody drug conjugate (anti-LGR5-ADC). RESULTS: LGR5 expression correlated with small tumor size, lower grade, lymph node negativity, and ER-positivity. ER+ patients with LGR5high tumors rarely had recurrence, while high-grade ER- patients with LGR5high expression recurred and died due to BC more often. Intriguingly, all the DCIS patients who later died of BC had LGR5-positive tumors. Colony assays and xenograft experiments substantiated a role for LGR5 in ER- tumor initiation and subsequent growth, which was further validated by lineage-tracing experiments in ER- /triple-negative BC mouse models. Importantly, by utilizing LGR5high patient-derived xenografts, we showed that anti-LGR5-ADC should be considered as a therapeutic for high-grade ER- BC. CONCLUSION: LGR5 has distinct roles in ER- vs. ER+ BC with potential clinical applicability as a biomarker to identify patients in need of therapy and could serve as a therapeutic target for high-grade ER- BC.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Carcinoma Intraductal não Infiltrante/química , Receptores Acoplados a Proteínas G/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/diagnóstico , Carcinoma Intraductal não Infiltrante/mortalidade , Carcinoma Intraductal não Infiltrante/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Pessoa de Meia-Idade , Prognóstico , RNA Neoplásico/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/análise , Receptores Acoplados a Proteínas G/imunologia , Análise Serial de Tecidos/métodos
6.
Dis Model Mech ; 12(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31208990

RESUMO

Mutations in GNB5, encoding the G-protein ß5 subunit (Gß5), have recently been linked to a multisystem disorder that includes severe bradycardia. Here, we investigated the mechanism underlying bradycardia caused by the recessive p.S81L Gß5 variant. Using CRISPR/Cas9-based targeting, we generated an isogenic series of human induced pluripotent stem cell (hiPSC) lines that were either wild type, heterozygous or homozygous for the GNB5 p.S81L variant. These were differentiated into cardiomyocytes (hiPSC-CMs) that robustly expressed the acetylcholine-activated potassium channel [I(KACh); also known as IK,ACh]. Baseline electrophysiological properties of the lines did not differ. Upon application of carbachol (CCh), homozygous p.S81L hiPSC-CMs displayed an increased acetylcholine-activated potassium current (IK,ACh) density and a more pronounced decrease of spontaneous activity as compared to wild-type and heterozygous p.S81L hiPSC-CMs, explaining the bradycardia in homozygous carriers. Application of the specific I(KACh) blocker XEN-R0703 resulted in near-complete reversal of the phenotype. Our results provide mechanistic insights and proof of principle for potential therapy in patients carrying GNB5 mutations.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acetilcolina/farmacologia , Bradicardia/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Variação Genética , Canais de Potássio/efeitos dos fármacos , Receptores Colinérgicos/fisiologia , Animais , Bradicardia/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Estudo de Prova de Conceito , Peixe-Zebra
7.
Theranostics ; 8(17): 4750-4764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279735

RESUMO

Cardiac arrhythmias are among the most challenging human disorders to diagnose and treat due to their complex underlying pathophysiology. Suitable experimental animal models are needed to study the mechanisms causative for cardiac arrhythmogenesis. To enable in vivo analysis of cardiac cellular electrophysiology with a high spatial and temporal resolution, we generated and carefully validated two zebrafish models, one expressing an optogenetic voltage indicator (chimeric VSFP-butterfly CY) and the other a genetically encoded calcium indicator (GCaMP6f) in the heart. Methods: High-speed epifluorescence microscopy was used to image chimeric VSFP-butterfly CY and GCaMP6f in the embryonic zebrafish heart, providing information about the spatiotemporal patterning of electrical activation, action potential configuration and intracellular Ca2+ dynamics. Plotting VSFP or GCaMP6f signals on a line along the myocardial wall over time facilitated the visualization and analysis of electrical impulse propagation throughout the heart. Administration of drugs targeting the sympathetic nervous system or cardiac ion channels was used to validate sensitivity and kinetics of both zebrafish sensor lines. Using the same microscope setup, we imaged transparent juvenile casper fish expressing GCaMP6f, demonstrating the feasibility of imaging cardiac optogenetic sensors at later stages of development. Results: Isoproterenol slightly increased heart rate, diastolic Ca2+ levels and Ca2+ transient amplitudes, whereas propranolol caused a profound decrease in heart rate and Ca2+ transient parameters in VSFP-Butterfly and GCaMP6f embryonic fish. Ikr blocker E-4031 decreased heart rate and increased action potential duration in VSFP-Butterfly fish. ICa,L blocker nifedipine caused total blockade of Ca2+ transients in GCaMP6f fish and a reduced heart rate, altered ventricular action potential duration and disrupted atrial-ventricular electrical conduction in VSFP-Butterfly fish. Imaging of juvenile animals demonstrated the possibility of employing an older zebrafish model for in vivo cardiac electrophysiology studies. We observed differences in atrial and ventricular Ca2+ recovery dynamics between 3 dpf and 14 dpf casper fish, but not in Ca2+ upstroke dynamics. Conclusion: By introducing the optogenetic sensors chimeric VSFP-butterfly CY and GCaMP6f into the zebrafish we successfully generated an in vivo cellular electrophysiological readout tool for the zebrafish heart. Complementary use of both sensor lines demonstrated the ability to study heart rate, cardiac action potential configuration, spatiotemporal patterning of electrical activation and intracellular Ca2+ homeostasis in embryonic zebrafish. In addition, we demonstrated the first successful use of an optogenetic sensor to study cardiac function in older zebrafish. These models present a promising new research tool to study the underlying mechanisms of cardiac arrhythmogenesis.


Assuntos
Antiarrítmicos/metabolismo , Relógios Biológicos/efeitos dos fármacos , Técnicas Eletrofisiológicas Cardíacas/métodos , Fenômenos Eletrofisiológicos , Frequência Cardíaca/efeitos dos fármacos , Optogenética/métodos , Animais , Coração/embriologia , Humanos , Isoproterenol/metabolismo , Microscopia de Fluorescência , Piperidinas/metabolismo , Propranolol/metabolismo , Piridinas/metabolismo , Peixe-Zebra/embriologia
8.
Circ Res ; 122(3): e5-e16, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29282212

RESUMO

RATIONALE: There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. OBJECTIVE: Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. METHODS AND RESULTS: MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. CONCLUSIONS: Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models.


Assuntos
Contração Miocárdica , Miócitos Cardíacos/fisiologia , Software , Algoritmos , Animais , Cardiomiopatia Hipertrófica/patologia , Cardiomiopatia Hipertrófica/fisiopatologia , Fármacos Cardiovasculares/farmacologia , Diferenciação Celular , Células Cultivadas , Subunidades beta da Proteína de Ligação ao GTP/deficiência , Subunidades beta da Proteína de Ligação ao GTP/genética , Humanos , Síndrome do QT Longo/patologia , Síndrome do QT Longo/fisiopatologia , Masculino , Microscopia/métodos , Modelos Cardiovasculares , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenótipo , Células-Tronco Pluripotentes/citologia , Coelhos , Gravação em Vídeo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
9.
Basic Res Cardiol ; 112(5): 56, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28861604

RESUMO

Our current understanding of cardiac excitation and its coupling to contraction is largely based on ex vivo studies utilising fluorescent organic dyes to assess cardiac action potentials and signal transduction. Recent advances in optogenetic sensors open exciting new possibilities for cardiac research and allow us to answer research questions that cannot be addressed using the classic organic dyes. Especially thrilling is the possibility to use optogenetic sensors to record parameters of cardiac excitation and contraction in vivo. In addition, optogenetics provide a high spatial resolution, as sensors can be coupled to motifs and targeted to specific cell types and subcellular domains of the heart. In this review, we will give a comprehensive overview of relevant optogenetic sensors, how they can be utilised in cardiac research and how they have been applied in cardiac research up to now.


Assuntos
Pesquisa Biomédica/métodos , Técnicas Biossensoriais , Sinalização do Cálcio , Cardiologia/métodos , Coração/fisiologia , Canais Iônicos/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Optogenética , Potenciais de Ação , Animais , Acoplamento Excitação-Contração , Humanos , Transporte de Íons
11.
Am J Hum Genet ; 99(3): 704-710, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27523599

RESUMO

GNB5 encodes the G protein ß subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype. Zebrafish gnb5 knockouts recapitulated the phenotypic spectrum of affected individuals, including cardiac, neurological, and ophthalmological abnormalities, supporting a direct role of GNB5 in the control of heart rate, hypotonia, and vision.


Assuntos
Bradicardia/genética , Bradicardia/fisiopatologia , Deficiências do Desenvolvimento/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Genes Recessivos/genética , Mutação/genética , Nó Sinoatrial/fisiopatologia , Adolescente , Animais , Criança , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Subunidades beta da Proteína de Ligação ao GTP/deficiência , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/fisiopatologia , Deleção de Genes , Frequência Cardíaca/genética , Heterozigoto , Humanos , Masculino , Hipotonia Muscular/genética , Mutação de Sentido Incorreto/genética , Linhagem , Fenótipo , Doenças Retinianas/genética , Doenças Retinianas/fisiopatologia , Convulsões/genética , Síndrome , Adulto Jovem , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra
13.
Haematologica ; 98(11): 1810-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23753027

RESUMO

Initial platelet arrest at the exposed arterial vessel wall is mediated through glycoprotein Ibα binding to the A1 domain of von Willebrand factor. This interaction occurs at sites of elevated shear force, and strengthens upon increasing hydrodynamic drag. The increased interaction requires shear-dependent exposure of the von Willebrand factor A1 domain, but the contribution of glycoprotein Ibα remains ill defined. We have previously found that glycoprotein Ibα forms clusters upon platelet cooling and hypothesized that such a property enhances the interaction with von Willebrand factor under physiological conditions. We analyzed the distribution of glycoprotein Ibα with Förster resonance energy transfer using time-gated fluorescence lifetime imaging microscopy. Perfusion at a shear rate of 1,600 s(-1) induced glycoprotein Ibα clusters on platelets adhered to von Willebrand factor, while clustering did not require von Willebrand factor contact at 10,000 s(-1). Shear-induced clustering was reversible, not accompanied by granule release or αIIbß3 activation and improved glycoprotein Ibα-dependent platelet interaction with von Willebrand factor. Clustering required glycoprotein Ibα translocation to lipid rafts and critically depended on arachidonic acid-mediated binding of 14-3-3ζ to its cytoplasmic tail. This newly identified mechanism emphasizes the ability of platelets to respond to mechanical force and provides new insights into how changes in hemodynamics influence arterial thrombus formation.


Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIb-IX de Plaquetas/metabolismo , Resistência ao Cisalhamento/fisiologia , Fator de von Willebrand/metabolismo , Adesão Celular/fisiologia , Análise por Conglomerados , Humanos , Ligação Proteica/fisiologia , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...