Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 451-463, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841886

RESUMO

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.


Assuntos
Halogênios , SARS-CoV-2 , Enxofre , Halogênios/química , Cristalografia por Raios X/métodos , Enxofre/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Humanos , Elétrons , Modelos Moleculares , Desenho de Fármacos , Ligação Proteica , Sítios de Ligação , COVID-19
2.
Artigo em Inglês | MEDLINE | ID: mdl-38422227

RESUMO

SARS-CoV-2 non-structural protein 10 (nsp10) is essential for the stimulation of enzymatic activities of nsp14 and nsp16, acting as both an activator and scaffolding protein. Nsp14 is a bifunctional enzyme with the N-terminus containing a 3'-5' exoribonuclease (ExoN) domain that allows the excision of nucleotide mismatches at the virus RNA 3'-end, and a C-terminal N7-methyltransferase (N7-MTase) domain. Nsp10 is required for stimulating both ExoN proofreading and the nsp16 2'-O-methyltransferase activities. This makes nsp10 a central player in both viral resistance to nucleoside-based drugs and the RNA cap methylation machinery that helps the virus evade innate immunity. We characterised the interactions between full-length nsp10 (139 residues), N- and C-termini truncated nsp10 (residues 10-133), and nsp10 with a C-terminal truncation (residues 1-133) with nsp14 using microscale thermophoresis, multi-detection SEC, and hydrogen-deuterium (H/D) exchange mass spectrometry. We describe the functional role of the C-terminal region of nsp10 for binding to nsp14 and show that full N- and C-termini of nsp10 are important for optimal binding. In addition, our H/D exchange experiments suggest an intermediary interaction of nsp10 with the N7-MTase domain of nsp14. In summary, our results suggest intermediary steps in the process of association or dissociation of the nsp10-nsp14 complex, involving contacts between the two proteins in regions not identifiable by X-ray crystallography alone.

3.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127066

RESUMO

The coronavirus SARS-CoV-2 protects its RNA from being recognized by host immune responses by methylation of its 5' end, also known as capping. This process is carried out by two enzymes, non-structural protein 16 (NSP16) containing 2'-O-methyltransferase and NSP14 through its N7 methyltransferase activity, which are essential for the replication of the viral genome as well as evading the host's innate immunity. NSP10 acts as a crucial cofactor and stimulator of NSP14 and NSP16. To further understand the role of NSP10, we carried out a comprehensive analysis of >13 million globally collected whole-genome sequences (WGS) of SARS-CoV-2 obtained from the Global Initiative Sharing All Influenza Data (GISAID) and compared it with the reference genome Wuhan/WIV04/2019 to identify all currently known variants in NSP10. T12I, T102I, and A104V in NSP10 have been identified as the three most frequent variants and characterized using X-ray crystallography, biophysical assays, and enhanced sampling simulations. In contrast to other proteins such as spike and NSP6, NSP10 is significantly less prone to mutation due to its crucial role in replication. The functional effects of the variants were examined for their impact on the binding affinity and stability of both NSP14-NSP10 and NSP16-NSP10 complexes. These results highlight the limited changes induced by variant evolution in NSP10 and reflect on the critical roles NSP10 plays during the SARS-CoV-2 life cycle. These results also indicate that there is limited capacity for the virus to overcome inhibitors targeting NSP10 via the generation of variants in inhibitor binding pockets.


Assuntos
COVID-19 , Proteínas Virais Reguladoras e Acessórias , Humanos , COVID-19/genética , Metiltransferases/genética , SARS-CoV-2/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas não Estruturais Virais/genética
4.
Int J Mol Sci ; 24(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37686452

RESUMO

The ß-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X
5.
Sci Rep ; 13(1): 16281, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770469

RESUMO

Antibody-fragment (Fab) therapy development has the potential to be accelerated by computational modelling and simulations that predict their target binding, stability, formulation, manufacturability, and the impact of further protein engineering. Such approaches are currently predicated on starting with good crystal structures that closely represent those found under the solution conditions to be simulated. A33 Fab, is an undeveloped immunotherapeutic antibody candidate that was targeted to the human A33 antigen homogeneously expressed in 95% cases of primary and metastatic colorectal cancers. It is now used as a very well characterised testing ground for developing analytics, formulation and protein engineering strategies, and to gain a deeper understanding of mechanisms of destabilisation, representative of the wider therapeutic Fab platform. In this article, we report the structure of A33 Fab in two different crystal forms obtained at acidic and basic pH. The structures overlapped with RMSD of 1.33 Å overall, yet only 0.5 Å and 0.76 Å for the variable- and constant regions alone. While most of the differences were within experimental error, the switch linker between the variable and the constant regions showed some small differences between the two pHs. The two structures then enabled a direct evaluation of the impact of initial crystal structure selection on the outcomes of molecular dynamics simulations under different conditions, and their subsequent use for determining best fit solution structures using previously obtained small-angle x-ray scattering (SAXS) data. The differences in the two structures did not have a major impact on MD simulations regardless of the pH, other than a slight persistence of structure affecting the solvent accessibility of one of the predicted APR regions of A33 Fab. Interestingly, despite being obtained at pH 4 and pH 9, the two crystal structures were more similar to the SAXS solution structures obtained at pH 7, than to those at pH 4 or pH 9. Furthermore, the P65 crystal structure from pH 4 was also a better representation of the solution structures at any other pH, than was the P1 structure obtained at pH 9. Thus, while obtained at different pH, the two crystal structures may represent highly (P65) and lesser (P1) populated species that both exist at pH 7 in solution. These results now lay the foundation for confident MD simulations of A33 Fab that rationalise or predict behaviours in a range of conditions.


Assuntos
Fragmentos Fab das Imunoglobulinas , Simulação de Dinâmica Molecular , Humanos , Difração de Raios X , Conformação Proteica , Espalhamento a Baixo Ângulo , Fragmentos Fab das Imunoglobulinas/química
6.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446375

RESUMO

The identification of multiple simultaneous orientations of small molecule inhibitors binding to a protein target is a common challenge. It has recently been reported that the conformational heterogeneity of ligands is widely underreported in the Protein Data Bank, which is likely to impede optimal exploitation to improve affinity of these ligands. Significantly less is even known about multiple binding orientations for fragments (<300 Da), although this information would be essential for subsequent fragment optimisation using growing, linking or merging and rational structure-based design. Here, we use recently reported fragment hits for the SARS-CoV-2 non-structural protein 1 (nsp1) N-terminal domain to propose a general procedure for unambiguously identifying binding orientations of 2-dimensional fragments containing either sulphur or chloro substituents within the wavelength range of most tunable beamlines. By measuring datasets at two energies, using a tunable beamline operating in vacuum and optimised for data collection at very low X-ray energies, we show that the anomalous signal can be used to identify multiple orientations in small fragments containing sulphur and/or chloro substituents or to verify recently reported conformations. Although in this specific case we identified the positions of sulphur and chlorine in fragments bound to their protein target, we are confident that this work can be further expanded to additional atoms or ions which often occur in fragments. Finally, our improvements in the understanding of binding orientations will also serve to improve the rational optimisation of SARS-CoV-2 nsp1 fragment hits.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Elétrons , Ligantes , Síncrotrons
7.
Sci Adv ; 9(13): eadf3021, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36989372

RESUMO

Protein filaments are used in myriads of ways to organize other molecules within cells. Some filament-forming proteins couple the hydrolysis of nucleotides to their polymerization cycle, thus powering the movement of other molecules. These filaments are termed cytomotive. Only members of the actin and tubulin protein superfamilies are known to form cytomotive filaments. We examined the basis of cytomotivity via structural studies of the polymerization cycles of actin and tubulin homologs from across the tree of life. We analyzed published data and performed structural experiments designed to disentangle functional components of these complex filament systems. Our analysis demonstrates the existence of shared subunit polymerization switches among both cytomotive actins and tubulins, i.e., the conformation of subunits switches upon assembly into filaments. These cytomotive switches can explain filament robustness, by enabling the coupling of kinetic and structural polarities required for cytomotive behaviors and by ensuring that single cytomotive filaments do not fall apart.


Assuntos
Actinas , Tubulina (Proteína) , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Polimerização , Citoesqueleto/metabolismo , Nucleotídeos/metabolismo , Citoesqueleto de Actina/metabolismo
8.
Elife ; 112022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36412088

RESUMO

Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α- and ß-coronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2. Here, by combining extensive molecular dynamics simulations, fragment screening and crystallography, we reveal druggable pockets in Nsp1. Structural and computational solvent mapping analyses indicate the partial crypticity of these newly discovered and druggable binding sites. The results of fragment-based screening via X-ray crystallography confirm the druggability of the major pocket of Nsp1. Finally, we show how the targeting of this pocket could disrupt the Nsp1-mRNA complex and open a novel avenue to design new inhibitors for other Nsp1s present in homologous ß-coronaviruses.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Cristalografia , Proteínas não Estruturais Virais/metabolismo , Estabilidade de RNA
9.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293303

RESUMO

The regular reappearance of coronavirus (CoV) outbreaks over the past 20 years has caused significant health consequences and financial burdens worldwide. The most recent and still ongoing novel CoV pandemic, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has brought a range of devastating consequences. Due to the exceptionally fast development of vaccines, the mortality rate of the virus has been curbed to a significant extent. However, the limitations of vaccination efficiency and applicability, coupled with the still high infection rate, emphasise the urgent need for discovering safe and effective antivirals against SARS-CoV-2 by suppressing its replication or attenuating its virulence. Non-structural protein 1 (nsp1), a unique viral and conserved leader protein, is a crucial virulence factor for causing host mRNA degradation, suppressing interferon (IFN) expression and host antiviral signalling pathways. In view of the essential role of nsp1 in the CoV life cycle, it is regarded as an exploitable target for antiviral drug discovery. Here, we report a variety of fragment hits against the N-terminal domain of SARS-CoV-2 nsp1 identified by fragment-based screening via X-ray crystallography. We also determined the structure of nsp1 at atomic resolution (0.99 Å). Binding affinities of hits against nsp1 and potential stabilisation were determined by orthogonal biophysical assays such as microscale thermophoresis and thermal shift assays. We identified two ligand-binding sites on nsp1, one deep and one shallow pocket, which are not conserved between the three medically relevant SARS, SARS-CoV-2 and MERS coronaviruses. Our study provides an excellent starting point for the development of more potent nsp1-targeting inhibitors and functional studies on SARS-CoV-2 nsp1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas não Estruturais Virais/metabolismo , Ligantes , Raios X , Sítios de Ligação , Antivirais/farmacologia , Interferons , Fatores de Virulência
10.
J Med Chem ; 65(10): 7380-7398, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35549469

RESUMO

Inhibitors of Kelch-like ECH-associated protein 1 (Keap1) increase the activity of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by stalling its ubiquitination and degradation. This enhances the expression of genes encoding proteins involved in drug detoxification, redox homeostasis, and mitochondrial function. Nrf2 activation offers a potential therapeutic approach for conditions including Alzheimer's and Parkinson's diseases, vascular inflammation, and chronic obstructive airway disease. Non-electrophilic Keap1-Nrf2 protein-protein interaction (PPI) inhibitors may have improved toxicity profiles and different pharmacological properties to cysteine-reactive electrophilic inhibitors. Here, we describe and characterize a series of phenyl bis-sulfonamide PPI inhibitors that bind to Keap1 at submicromolar concentrations. Structural studies reveal that the compounds bind to Keap1 in a distinct "peptidomimetic" conformation that resembles the Keap1-Nrf2 ETGE peptide complex. This is different to other small molecule Keap1-Nrf2 PPI inhibitors, including bicyclic aryl bis-sulfonamides, offering a starting point for new design approaches to Keap1 inhibitors.


Assuntos
Fator 2 Relacionado a NF-E2 , Sulfonamidas , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Sulfonamidas/farmacologia
11.
RSC Chem Biol ; 3(1): 44-55, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128408

RESUMO

Since the emergence of SARS-CoV-2 in 2019, Covid-19 has developed into a serious threat to our health, social and economic systems. Although vaccines have been developed in a tour-de-force and are now increasingly available, repurposing of existing drugs has been less successful. There is a clear need to develop new drugs against SARS-CoV-2 that can also be used against future coronavirus infections. Non-structural protein 10 (nsp10) is a conserved stimulator of two enzymes crucial for viral replication, nsp14 and nsp16, exhibiting exoribonuclease and methyltransferase activities. Interfering with RNA proofreading or RNA cap formation represents intervention strategies to inhibit replication. We applied fragment-based screening using nano differential scanning fluorometry and X-ray crystallography to identify ligands targeting SARS-CoV-2 nsp10. We identified four fragments located in two distinct sites: one can be modelled to where it would be located in the nsp14-nsp10 complex interface and the other in the nsp16-nsp10 complex interface. Microscale thermophoresis (MST) experiments were used to quantify fragment affinities for nsp10. Additionally, we showed by MST that the interaction by nsp14 and 10 is weak and thereby that complex formation could be disrupted by small molecules. The fragments will serve as starting points for the development of more potent analogues using fragment growing techniques and structure-based drug design.

12.
Comput Struct Biotechnol J ; 19: 2726-2741, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093988

RESUMO

Successful development of protein therapeutics depends critically on achieving stability under a range of conditions. A deeper understanding of the drivers of instability across different stress conditions, will enable the engineering of more robust protein scaffolds. We compared the impacts of low pH and high temperature stresses on the structure of a humanized antibody fragment (Fab) A33, using atomistic molecular dynamics simulations, using a recent 2.5 Å crystal structure. This revealed that low-pH induced the loss of native contacts in the domain CL. By contrast, thermal stress led to 5-7% loss of native contacts in all four domains, and simultaneous loss of >30% of native contacts in the VL-VH and CL-CH interfaces. This revealed divergent destabilising pathways under the two different stresses. The underlying cause of instability was probed using FoldX and Rosetta mutation analysis, and packing density calculations. These agreed that mutations in the CL domain, and CL-CH1 interface have the greatest potential for stabilisation of Fab A33. Several key salt bridge losses underpinned the conformational change in CL at low pH, whereas at high temperature, salt bridges became more dynamic, thus contributing to an overall destabilization. Lastly, the unfolding events at the two stress conditions exposed different predicted aggregation-prone regions (APR) to solvent, which would potentially lead to different aggregation mechanisms. Overall, our results identified the early stages of unfolding and stability-limiting regions of Fab A33, and the VH and CL domains as interesting future targets for engineering stability to both pH- and thermal-stresses simultaneously.

13.
J Mol Biol ; 433(15): 167061, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34023403

RESUMO

Mycobacterium tuberculosis is responsible for more than 1.6 million deaths each year. One potential antibacterial target in M. tuberculosis is filamentous temperature sensitive protein Z (FtsZ), which is the bacterial homologue of mammalian tubulin, a validated cancer target. M. tuberculosis FtsZ function is essential, with its inhibition leading to arrest of cell division, elongation of the bacterial cell and eventual cell death. However, the development of potent inhibitors against FtsZ has been a challenge owing to the lack of structural information. Here we report multiple crystal structures of M. tuberculosis FtsZ in complex with a coumarin analogue. The 4-hydroxycoumarin binds exclusively to two novel cryptic pockets in nucleotide-free FtsZ, but not to the binary FtsZ-GTP or GDP complexes. Our findings provide a detailed understanding of the molecular basis for cryptic pocket formation, controlled by the conformational flexibility of the H7 helix, and thus reveal an important structural and mechanistic rationale for coumarin antibacterial activity.


Assuntos
4-Hidroxicumarinas/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Mycobacterium tuberculosis/metabolismo , 4-Hidroxicumarinas/química , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Ligação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice
14.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036230

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), causing Coronavirus Disease 19 (COVID-19), emerged at the end of 2019 and quickly spread to cause a global pandemic with severe socio-economic consequences. The early sequencing of its RNA genome revealed its high similarity to SARS, likely to have originated from bats. The SARS-CoV-2 non-structural protein 10 (nsp10) displays high sequence similarity with its SARS homologue, which binds to and stimulates the 3'-to-5' exoribonuclease and the 2'-O-methlytransferase activities of nsps 14 and 16, respectively. Here, we report the biophysical characterization and 1.6 Å resolution structure of the unbound form of nsp10 from SARS-CoV-2 and compare it to the structures of its SARS homologue and the complex-bound form with nsp16 from SARS-CoV-2. The crystal structure and solution behaviour of nsp10 will not only form the basis for understanding the role of SARS-CoV-2 nsp10 as a central player of the viral RNA capping apparatus, but will also serve as a basis for the development of inhibitors of nsp10, interfering with crucial functions of the replication-transcription complex and virus replication.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Virais Reguladoras e Acessórias/química , Sítios de Ligação , Cristalografia por Raios X , Ligação Proteica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homologia de Sequência , Proteínas Virais Reguladoras e Acessórias/metabolismo , Dedos de Zinco
15.
Mol Cancer Ther ; 18(12): 2394-2406, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31488701

RESUMO

Arry-520 is an advanced drug candidate from the Eg5 inhibitor class undergoing clinical evaluation in patients with relapsed or refractory multiple myeloma. Here, we show by structural analysis that Arry-520 binds stoichiometrically to the motor domain of Eg5 in the conventional allosteric loop L5 pocket in a complex that suggests the same structural mechanism as other Eg5 inhibitors. We have previously shown that acquired resistance through mutations in the allosteric-binding site located at loop L5 in the Eg5 structure appears to be independent of the inhibitors' scaffold, which suggests that Arry-520 will ultimately have the same fate. When Arry-520 was assessed in two cell lines selected for the expression of either Eg5(D130A) or Eg5(L214A) STLC-resistant alleles, mutations previously shown to convey resistance to this class of inhibitors, it was inactive in both. Surprisingly, when the cells were challenged with ispinesib, another Eg5 inhibitor, the Eg5(D130A) cells were resistant, but those expressing Eg5(L214A) were strikingly sensitive. Molecular dynamics simulations suggest that subtle differences in ligand binding and flexibility in both compound and protein may alter allosteric transmission from the loop L5 site that do not necessarily result in reduced inhibitory activity in mutated Eg5 structures. Although we predict that cells challenged with Arry-520 in the clinical setting are likely to acquire resistance through point mutations in the Eg5-binding site, the data for ispinesib suggest that this resistance mechanism is not scaffold independent as previously thought, and new inhibitors can be designed that retain inhibitory activity in these resistant cells.


Assuntos
Antimitóticos/uso terapêutico , Tiadiazóis/uso terapêutico , Antimitóticos/farmacologia , Técnicas de Cultura de Células , Humanos , Modelos Moleculares , Tiadiazóis/farmacologia
16.
Biol Open ; 8(1)2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30602529

RESUMO

Members of the Flaviviridae family constitute a severe risk to human health. Whilst effective drugs have been developed against the hepacivirus HCV, no antiviral therapy is currently available for any other viruses, including the flaviviruses dengue (DENV), West Nile and Zika viruses. The RNA-dependent RNA polymerase (RdRp) is responsible for viral replication and represents an excellent therapeutic target with no homologue found in mammals. The identification of compounds targeting the RdRp of other flaviviruses is an active area of research. One of the main factors hampering further developments in the field is the difficulty in obtaining high-quality crystal information that could aid a structure-based drug discovery approach. To address this, we have developed a convenient and economical 96-well screening platform. We validated the screen by successfully obtaining crystals of both native DENV serotype 2 and 3 RdRps under several conditions included in the screen. In addition, we have obtained crystal structures of RdRp3 in complex with a previously identified fragment using both soaking and co-crystallization techniques. This work will streamline and accelerate the generation of crystal structures of viral RdRps and provide the community with a valuable tool to aid the development of structure-based antiviral design.

18.
Bioorg Med Chem Lett ; 28(17): 2930-2938, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30055887

RESUMO

A novel series of 1,3,4-thiadiazole-thiazolone hybrids 5a-v were designed, synthesized, characterized, and evaluated against the basal and the microtubule (MT)-stimulated ATPase activity of Eg5. From the evaluated derivatives, 5h displayed the highest inhibition with an IC50 value of 13.2 µM against the MT-stimulated Eg5 ATPase activity. Similarly, compounds 5f and 5i also presented encouraging inhibition with IC50 of 17.2 µM and 20.2 µM, respectively. A brief structure-activity relationship (SAR) analysis indicated that 2-chloro and 4-nitro substituents on the phenyl ring of the thiazolone motif contributed significantly to enzyme inhibition. An in silico molecular docking study using the crystal structure of Eg5 further supported the SAR and reasoned the importance of crucial molecular protein-ligand interactions in influencing the inhibition of the ATPase activity of Eg5. The magnitude of the electron-withdrawing functionalities over the hybrids and the critical molecular interactions contributed towards higher in vitro potency of the compounds. The drug-like properties of the synthesized compounds 5a-v were also calculated based on the Lipinski's rule of five and in silico computation of key pharmacokinetic parameters (ADME). Thus, the present work unveils these hybrid molecules as novel Eg5 inhibitors with promising drug-like properties for future development.


Assuntos
Desenho de Fármacos , Cinesinas/antagonistas & inibidores , Tiadiazóis/farmacologia , Tiazóis/farmacologia , Adenosina Trifosfatases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Tiadiazóis/química , Tiazóis/química
19.
Eur J Med Chem ; 156: 641-651, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30031975

RESUMO

The thiadiazole scaffold is an important core moiety in a variety of clinical drug candidates targeting a range of diseases. For example, the 2,4,5-substituted 1,3,4-thiadiazole scaffold is present in a lead compound and at least two clinical candidates targeting the human motor protein Eg5, against neoplastic diseases. An inhibitor named K858 has in vivo activity in various mouse xenografts whereas the clinical candidates (S)-ARRY-520 and (R)-Litronesib have entered clinical trials with the former one in phase III clinical trials either alone or in combination with a proteasome inhibitor against relapsed/refractory multiple myeloma. Astonishingly, structural data are lacking for all thiadiazole-containing Eg5 inhibitors. Here we report the structure determination of two crystal forms of the ternary Eg5-ADP-K858 complex, locking the motor in the so-called final inhibitor bound state, thus blocking ADP release, a crucial stage for Eg5 activity. K858 acts at the established allosteric inhibitor-binding pocket formed of helix α2, loop L5 and helix α3. The structure of the complex has far reaching consequences for thiadiazole containing Eg5 inhibitors. For example, we could rationalise the structure-activity relationship in the crucial 5-position of the thiadiazole scaffold and the complex will serve in the future as a basis for strucutre-based drug design.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinesinas/antagonistas & inibidores , Tiadiazóis/química , Tiadiazóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Humanos , Cinesinas/química , Cinesinas/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade
20.
Chembiochem ; 19(17): 1810-1816, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-29927029

RESUMO

Noncovalent inhibitors of the Keap1-Nrf2 protein-protein interaction (PPI) have therapeutic potential in a range of disease states including neurodegenerative diseases (Parkinson's and Alzheimer's diseases), chronic obstructive pulmonary disease and various inflammatory conditions. By stalling Keap1-mediated ubiquitination of Nrf2, such compounds can enhance Nrf2 transcriptional activity and activate the expression of a range of genes with antioxidant response elements in their promoter regions. Keap1 inhibitors based on peptide and small-molecule templates have been identified. In this paper we develop the structure-activity relationships of the peptide series and identify a group of ligands incorporating unnatural amino acids that demonstrate improved binding affinity in fluorescence polarisation, differential scanning fluorimetry and isothermal titration calorimetry assays. These modified peptides have the potential for further development into peptidomimetic chemical probes to explore the role of Nrf2 in disease and as potential lead structures for drug development.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Oligopeptídeos/química , Ligação Proteica/efeitos dos fármacos , Aminoácidos/química , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Oligopeptídeos/síntese química , Conformação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA