Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Hum Genet ; 143(5): 721-734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38691166

RESUMO

TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.


Assuntos
Estudos de Associação Genética , Perda Auditiva , Proteínas de Membrana , Serina Endopeptidases , Humanos , Feminino , Masculino , Serina Endopeptidases/genética , Adulto , Proteínas de Membrana/genética , Perda Auditiva/genética , Criança , Pessoa de Meia-Idade , Adolescente , Pré-Escolar , Genótipo , Estudos de Coortes , Fenótipo , Mutação de Sentido Incorreto , Estudos Transversais , Adulto Jovem , Estudos Retrospectivos , Idoso , Proteínas de Neoplasias
2.
Cells ; 12(12)2023 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371069

RESUMO

Worldwide, around 40,000 people progressively lose their eyesight as a consequence of retinitis pigmentosa (RP) caused by pathogenic variants in the ADGRV1 gene, for which currently no treatment options exist. A model organism that mimics the human phenotype is essential to unravel the exact pathophysiological mechanism underlying ADGRV1-associated RP, and to evaluate future therapeutic strategies. The introduction of CRISPR/Cas-based genome editing technologies significantly improved the possibilities of generating mutant models in a time- and cost-effective manner. Zebrafish have been recognized as a suitable model to study Usher syndrome-associated retinal dysfunction. Using CRISPR/Cas9 technology we introduced a 4bp deletion in adgrv1 exon 9 (adgrv1rmc22). Immunohistochemical analysis showed that Adgrv1 was absent from the region of the photoreceptor connecting cilium in the adgrv1rmc22 zebrafish retina. Here, the absence of Adgrv1 also resulted in reduced levels of the USH2 complex members usherin and Whrnb, suggesting that Adgrv1 interacts with usherin and Whrnb in zebrafish photoreceptors. When comparing adgrv1rmc22 zebrafish with wild-type controls, we furthermore observed increased levels of aberrantly localized rhodopsin in the photoreceptor cell body, and decreased electroretinogram (ERG) B-wave amplitudes which indicate that the absence of Adgrv1 results in impaired retinal function. Based on these findings we present the adgrv1rmc22 zebrafish as the first ADGRV1 mutant model that displays an early retinal dysfunction. Moreover, the observed phenotypic changes can be used as quantifiable outcome measures when evaluating the efficacy of future novel therapeutic strategies for ADGRV1-associated RP.


Assuntos
Retinose Pigmentar , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Retina , Retinose Pigmentar/genética
3.
Mol Ther Nucleic Acids ; 32: 980-994, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37313440

RESUMO

Loss-of-function mutations in USH2A are among the most common causes of syndromic and non-syndromic retinitis pigmentosa (RP). We previously presented skipping of USH2A exon 13 as a promising treatment paradigm for USH2A-associated RP. However, RP-associated mutations are often private, and evenly distributed along the USH2A gene. In order to broaden the group of patients that could benefit from therapeutic exon skipping strategies, we expanded our approach to other USH2A exons in which unique loss-of-function mutations have been reported by implementing a protein domain-oriented dual exon skipping strategy. We first generated zebrafish mutants carrying a genomic deletion of the orthologous exons of the frequently mutated human USH2A exons 30-31 or 39-40 using CRISPR-Cas9. Excision of these in-frame combinations of exons restored usherin expression in the zebrafish retina and rescued the photopigment mislocalization typically observed in ush2a mutants. To translate these findings into a future treatment in humans, we employed in vitro assays to identify and validate antisense oligonucleotides (ASOs) with a high potency for sequence-specific dual exon skipping. Together, the in vitro and in vivo data demonstrate protein domain-oriented ASO-induced dual exon skipping to be a highly promising treatment option for RP caused by mutations in USH2A.

4.
J Med Genet ; 60(11): 1061-1066, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37164627

RESUMO

BACKGROUND: A 12-nucleotide RIPOR2 in-frame deletion was recently identified as a relatively common and highly penetrant cause of autosomal dominant non-syndromic sensorineural hearing loss, type DFNA21, in the Netherlands. The associated hearing phenotype is variable. The allele frequency (AF) of 0.039% of this variant was determined in a local cohort, and the reported phenotype may be biased because studied families were identified based on index patients with hearing loss (HL). In this study, we determine the AF in a cohort from a different geographical region of the Netherlands. Additionally, we examine the hearing phenotype in individuals with the variant but not selected for HL. METHODS: The AF was determined in participants of the Rotterdam Study (RS), a large cohort study. The phenotype was characterised using individual clinical hearing data, including audiograms. RESULTS: The observed AF in the RS cohort was 0.072% and not statistically significantly different from the previously observed 0.039%. The AF in the two cohorts combined was 0.052%. Consistent with previous findings, we found a highly variable audiometric phenotype with non-penetrance of HL in 40% of subjects aged 55-81, which is higher than the 10% at age 50 previously observed. CONCLUSION: We found an overall higher AF and lower penetrance than previously reported, confirming that DFNA21 is relatively common in the Netherlands. This supports its potential suitability as a target for therapeutic development. Studying possible modifying factors is essential to explain the phenotypical variability and to identify patients eligible for such a therapy.

6.
Genes (Basel) ; 14(2)2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36833385

RESUMO

The aim of this study is to contribute to a better description of the genotypic and phenotypic spectrum of DFNA6/14/38 and aid in counseling future patients identified with this variant. Therefore, we describe the genotype and phenotype in a large Dutch-German family (W21-1472) with autosomal dominant non-syndromic, low-frequency sensorineural hearing loss (LFSNHL). Exome sequencing and targeted analysis of a hearing impairment gene panel were used to genetically screen the proband. Co-segregation of the identified variant with hearing loss was assessed by Sanger sequencing. The phenotypic evaluation consisted of anamnesis, clinical questionnaires, physical examination and examination of audiovestibular function. A novel likely pathogenic WFS1 variant (NM_006005.3:c.2512C>T p.(Pro838Ser)) was identified in the proband and found to co-segregate with LFSNHL, characteristic of DFNA6/14/38, in this family. The self-reported age of onset of hearing loss (HL) ranged from congenital to 50 years of age. In the young subjects, HL was demonstrated in early childhood. At all ages, an LFSNHL (0.25-2 kHz) of about 50-60 decibel hearing level (dB HL) was observed. HL in the higher frequencies showed inter-individual variability. The dizziness handicap inventory (DHI) was completed by eight affected subjects and indicated a moderate handicap in two of them (aged 77 and 70). Vestibular examinations (n = 4) showed abnormalities, particularly in otolith function. In conclusion, we identified a novel WFS1 variant that co-segregates with DFNA6/14/38 in this family. We found indications of mild vestibular dysfunction, although it is uncertain whether this is related to the identified WFS1 variant or is an incidental finding. We would like to emphasize that conventional neonatal hearing screening programs are not sensitive to HL in DFNA6/14/38 patients, because high-frequency hearing thresholds are initially preserved. Therefore, we suggest screening newborns in DFNA6/14/38 families with more frequency-specific methods.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Pré-Escolar , Perda Auditiva Neurossensorial/genética , Genótipo , Fenótipo
7.
HGG Adv ; 4(2): 100181, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36785559

RESUMO

A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A-associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro. Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Síndromes de Usher/diagnóstico , Precursores de RNA , Mutação , Linhagem , Retinose Pigmentar/diagnóstico , Sequenciamento Completo do Genoma , Proteínas da Matriz Extracelular/genética
8.
Genet Med ; 25(3): 100345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36524988

RESUMO

PURPOSE: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs. METHODS: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria. RESULTS: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses. CONCLUSION: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated.


Assuntos
Genoma Humano , Doenças Retinianas , Humanos , Estudos Retrospectivos , Genoma Humano/genética , Mapeamento Cromossômico , Análise de Sequência , Doenças Retinianas/genética , Variação Estrutural do Genoma , Proteínas do Olho/genética
9.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362125

RESUMO

Non-canonical splice site variants are increasingly recognized as a relevant cause of the USH2A-associated diseases, non-syndromic autosomal recessive retinitis pigmentosa and Usher syndrome type 2. Many non-canonical splice site variants have been reported in public databases, but an effect on pre-mRNA splicing has only been functionally verified for a subset of these variants. In this study, we aimed to extend the knowledge regarding splicing events by assessing a selected set of USH2A non-canonical splice site variants and to study their potential pathogenicity. Eleven non-canonical splice site variants were selected based on four splice prediction tools. Ten different USH2A constructs were generated and minigene splice assays were performed in HEK293T cells. An effect on pre-mRNA splicing was observed for all 11 variants. Various events, such as exon skipping, dual exon skipping and partial exon skipping were observed and eight of the tested variants had a full effect on splicing as no conventionally spliced mRNA was detected. We demonstrated that non-canonical splice site variants in USH2A are an important contributor to the genetic etiology of the associated disorders. This type of variant generally should not be neglected in genetic screening, both in USH2A-associated disease as well as other hereditary disorders. In addition, cases with these specific variants may now receive a conclusive genetic diagnosis.


Assuntos
Síndromes de Usher , Humanos , Síndromes de Usher/genética , Células HEK293 , Precursores de RNA , Proteínas da Matriz Extracelular/genética , Mutação , Sítios de Splice de RNA/genética
10.
NPJ Genom Med ; 7(1): 37, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672333

RESUMO

The USH2A variant c.2276 G > T (p.(Cys759Phe)) has been described by many authors as a frequent cause of autosomal recessive retinitis pigmentosa (arRP). However, this is in contrast with the description of two asymptomatic individuals homozygous for this variant. We therefore assessed pathogenicity of the USH2A c.2276 G > T variant using extensive genetic and functional analyses. Whole genome sequencing and optical genome mapping were performed for three arRP cases homozygous for USH2A c.2276 G > T to exclude alternative genetic causes. A minigene splice assay was designed to investigate the effect of c.2276 G > T on pre-mRNA splicing, in presence or absence of the nearby c.2256 T > C variant. Moreover, an ush2ap.(Cys771Phe) zebrafish knock-in model mimicking human p.(Cys759Phe) was generated and characterized using functional and immunohistochemical analyses. Besides the homozygous c.2276 G > T USH2A variant, no alternative genetic causes were identified. Evaluation of the ush2ap.(Cys771Phe) zebrafish model revealed strongly reduced levels of usherin expression at the photoreceptor periciliary membrane, increased levels of rhodopsin localization in the photoreceptor cell body and decreased electroretinogram (ERG) b-wave amplitudes compared to wildtype controls. In conclusion, we confirmed pathogenicity of USH2A c.2276 G > T (p.(Cys759Phe)). Consequently, cases homozygous for c.2276 G > T can now receive a definite genetic diagnosis and can be considered eligible for receiving future QR-421a-mediated exon 13 skipping therapy.

11.
Genes (Basel) ; 13(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35627237

RESUMO

The inner ear is a complex structure at the cellular and molecular levels [...].


Assuntos
Orelha Interna , Perda Auditiva , Perda Auditiva/genética , Humanos
12.
Methods Mol Biol ; 2434: 281-299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213025

RESUMO

Antisense oligonucleotide (AON)-based splice modulation is the most widely used therapeutic approach to redirect precursor messenger RNA (pre-mRNA) splicing. To study the functional effect of human mutations affecting pre-mRNA splicing for which AON-based splice redirection would be a potential therapeutic option, humanized knock-in animal models are pivotal. A major limitation of using humanized animal models for this purpose is the reported poor recognition of human splice sites by the splicing machineries of other species. To overcome this problem, we provide a detailed guideline for the generation of functional humanized knock-in zebrafish models to assess the effect of mutation-induced aberrant splicing and subsequent AON-based splice modulation therapy .


Assuntos
Splicing de RNA , Peixe-Zebra , Animais , Humanos , Mutação , Oligonucleotídeos Antissenso/farmacologia , Precursores de RNA/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
13.
Biomolecules ; 12(2)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35204720

RESUMO

Pathogenic missense variants in COCH are associated with DFNA9, an autosomal dominantly inherited type of progressive sensorineural hearing loss with or without vestibular dysfunction. This study is a comprehensive overview of genotype-phenotype correlations using the PRISMA and HuGENet guidelines. Study characteristics, risk of bias, genotyping and data on the self-reported age of onset, symptoms of vestibular dysfunction, normative test results for vestibular function, and results of audiovestibular examinations were extracted for each underlying pathogenic COCH variant. The literature search yielded 48 studies describing the audiovestibular phenotypes of 27 DFNA9-associated variants in COCH. Subsequently, meta-analysis of audiometric data was performed by constructing age-related typical audiograms and by performing non-linear regression analyses on the age of onset and progression of hearing loss. Significant differences were found between the calculated ages of onset and progression of the audiovestibular phenotypes of subjects with pathogenic variants affecting either the LCCL domain of cochlin or the vWFA2 and Ivd1 domains. We conclude that the audiovestibular phenotypes associated with DFNA9 are highly variable. Variants affecting the LCCL domain of cochlin generally lead to more progression of hearing loss when compared to variants affecting the other domains. This review serves as a reference for prospective natural history studies in anticipation of mutation-specific therapeutic interventions.


Assuntos
Proteínas da Matriz Extracelular , Perda Auditiva Neurossensorial , Doenças Vestibulares , Proteínas da Matriz Extracelular/genética , Estudos de Associação Genética , Perda Auditiva Neurossensorial/genética , Humanos , Mutação , Estudos Prospectivos , Doenças Vestibulares/genética , Doenças Vestibulares/patologia
14.
Hum Genet ; 141(11): 1723-1738, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35226187

RESUMO

Usher syndrome (USH) is an autosomal recessively inherited disease characterized by sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP) with or without vestibular dysfunction. It is highly heterogeneous both clinically and genetically. Recently, variants in the arylsulfatase G (ARSG) gene have been reported to underlie USH type IV. This distinct type of USH is characterized by late-onset RP with predominantly pericentral and macular changes, and late onset SNHL without vestibular dysfunction. In this study, we describe the USH type IV phenotype in three unrelated subjects. We identified three novel pathogenic variants, two novel likely pathogenic variants, and one previously described pathogenic variant in ARSG. Functional experiments indicated a loss of sulfatase activity of the mutant proteins. Our findings confirm that ARSG variants cause the newly defined USH type IV and support the proposed extension of the phenotypic USH classification.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Arilsulfatases , Humanos , Proteínas Mutantes , Retinose Pigmentar/genética , Sulfatases , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
16.
Hum Genet ; 141(3-4): 383-386, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34599370

RESUMO

Despite decades of research, there is much to be learned about the genetic landscape of sensorineural hearing loss. Novel genes for hearing loss remain to be identified while 'secrets' of the known genes need to be uncovered. These 'secrets' include regulatory mechanisms of gene activity and novel aspects of gene structure. To obtain a more complete picture of the genetics of hearing loss, the available experimental and bioinformatic tools need to be fully exploited. This is also true for data resources such as ENCODE. For the inner ear, however, such data resources and analytical tools need to be developed or extended. Collaborative studies provide opportunities to achieve this and to optimally use those tools and resources that are already available. This will accelerate the discoveries that are necessary for improving molecular genetic diagnostics and genetic counselling and for the development of therapeutic strategies.


Assuntos
Surdez , Orelha Interna , Perda Auditiva Neurossensorial , Perda Auditiva , Estudos de Associação Genética , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Humanos
17.
Hum Genet ; 141(3-4): 465-484, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34410491

RESUMO

Pathogenic variants in SLC26A4 have been associated with autosomal recessive hearing loss (arHL) and a unilateral or bilateral enlarged vestibular aqueduct (EVA). SLC26A4 is the second most frequently mutated gene in arHL. Despite the strong genotype-phenotype correlation, a significant part of cases remains genetically unresolved. In this study, we investigated a cohort of 28 Dutch index cases diagnosed with HL in combination with an EVA but without (M0) or with a single (M1) pathogenic variant in SLC26A4. To explore the missing heritability, we first determined the presence of the previously described EVA-associated haplotype (Caucasian EVA (CEVA)), characterized by 12 single nucleotide variants located upstream of SLC26A4. We found this haplotype and a delimited V1-CEVA haplotype to be significantly enriched in our M1 patient cohort (10/16 cases). The CEVA haplotype was also present in two M0 cases (2/12). Short- and long-read whole genome sequencing and optical genome mapping could not prioritize any of the variants present within the CEVA haplotype as the likely pathogenic defect. Short-read whole-genome sequencing of the six M1 cases without this haplotype and the two M0/CEVA cases only revealed previously overlooked or misinterpreted splice-altering SLC26A4 variants in two cases, who are now genetically explained. No deep-intronic or structural variants were identified in any of the M1 subjects. With this study, we have provided important insights that will pave the way for elucidating the missing heritability in M0 and M1 SLC26A4 cases. For pinpointing the pathogenic effect of the CEVA haplotype, additional analyses are required addressing defect(s) at the RNA, protein, or epigenetic level.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Humanos , Proteínas de Membrana Transportadoras/genética , Mutação , Fenótipo , Transportadores de Sulfato/genética , Aqueduto Vestibular/anormalidades
18.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34502064

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.


Assuntos
Modelos Animais de Doenças , Proteínas do Olho/genética , Retinose Pigmentar/genética , Proteínas de Peixe-Zebra/genética , Animais , Sistemas CRISPR-Cas , Éxons , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Terapia Genética/métodos , Fenótipo , Domínios Proteicos , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502338

RESUMO

CRISPR-Cas9-based genome-editing is a highly efficient and cost-effective method to generate zebrafish loss-of-function alleles. However, introducing patient-specific variants into the zebrafish genome with CRISPR-Cas9 remains challenging. Targeting options can be limited by the predetermined genetic context, and the efficiency of the homology-directed DNA repair pathway is relatively low. Here, we illustrate our efficient approach to develop knock-in zebrafish models using two previously variants associated with hereditary sensory deficits. We employ sgRNA-Cas9 ribonucleoprotein (RNP) complexes that are micro-injected into the first cell of fertilized zebrafish eggs together with an asymmetric, single-stranded DNA template containing the variant of interest. The introduction of knock-in events was confirmed by massive parallel sequencing of genomic DNA extracted from a pool of injected embryos. Simultaneous morpholino-induced blocking of a key component of the non-homologous end joining DNA repair pathway, Ku70, improved the knock-in efficiency for one of the targets. Our use of RNP complexes provides an improved knock-in efficiency as compared to previously published studies. Correct knock-in events were identified in 3-8% of alleles, and 30-45% of injected animals had the target variant in their germline. The detailed technical and procedural insights described here provide a valuable framework for the efficient development of knock-in zebrafish models.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Edição de Genes , Técnicas de Introdução de Genes/métodos , Doenças Genéticas Inatas/genética , Engenharia Genética/métodos , Proteínas de Peixe-Zebra/genética , Animais , Mutagênese , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
20.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203967

RESUMO

A substantial proportion of subjects with autosomal recessive retinitis pigmentosa (arRP) or Usher syndrome type II (USH2) lacks a genetic diagnosis due to incomplete USH2A screening in the early days of genetic testing. These cases lack eligibility for optimal genetic counseling and future therapy. USH2A defects are the most frequent cause of USH2 and are also causative in individuals with arRP. Therefore, USH2A is an important target for genetic screening. The aim of this study was to assess unscreened or incompletely screened and unexplained USH2 and arRP cases for (likely) pathogenic USH2A variants. Molecular inversion probe (MIP)-based sequencing was performed for the USH2A exons and their flanking regions, as well as published deep-intronic variants. This was done to identify single nucleotide variants (SNVs) and copy number variants (CNVs) in 29 unscreened or partially pre-screened USH2 and 11 partially pre-screened arRP subjects. In 29 out of these 40 cases, two (likely) pathogenic variants were successfully identified. Four of the identified SNVs and one CNV were novel. One previously identified synonymous variant was demonstrated to affect pre-mRNA splicing. In conclusion, genetic diagnoses were obtained for a majority of cases, which confirms that MIP-based sequencing is an effective screening tool for USH2A. Seven unexplained cases were selected for future analysis with whole genome sequencing.


Assuntos
Análise Custo-Benefício , Éxons/genética , Proteínas da Matriz Extracelular/genética , Sondas Moleculares/metabolismo , Sítios de Splice de RNA/genética , Retinose Pigmentar/genética , Análise de Sequência de DNA , Síndromes de Usher/genética , Sequência de Bases , Variações do Número de Cópias de DNA/genética , Deleção de Genes , Humanos , Polimorfismo de Nucleotídeo Único/genética , Retinose Pigmentar/economia , Síndromes de Usher/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...