Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752699

RESUMO

Extrachromosomal circular DNA (eccDNA) refers to small circular DNA molecules that are distinct from chromosomal DNA and play diverse roles in various biological processes. They are also explored as potential biomarkers for disease diagnosis and precision medicine. However, isolating eccDNA from tissues and plasma is challenging due to low abundance and the presence of interfering linear DNA, requiring time-consuming processes and expert handling. Our study addresses this by utilizing a microfluidic chip tailored for eccDNA isolation, leveraging microfluidic principles for enzymatic removal of non-circular DNA. Our approach involves integrating restriction enzymes into the microfluidic chip, enabling selective digestion of mitochondrial and linear DNA fragments while preserving eccDNA integrity. This integration is facilitated by an in situ photo-polymerized emulsion inside microchannels, creating a porous monolithic structure suitable for immobilizing restriction and exonuclease enzymes (restriction enzyme MssI and exonuclease ExoV). Evaluation using control DNA mixtures and plasma samples with artificially introduced eccDNA demonstrated that our microfluidic chips reduce linear DNA by over 99%, performing comparable to conventional off-chip methods but with substantially faster digestion times, allowing for a remarkable 76-fold acceleration in overall sample preparation time. This technological advancement holds great promise for enhancing the isolation and analysis of eccDNA from tissue and plasma and the potential for increasing the speed of other molecular methods with multiple enzymatic steps.

2.
Anal Bioanal Chem ; 415(22): 5421-5436, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37438566

RESUMO

The development of cell-based microfluidic assays offers exciting new opportunities in toxicity testing, allowing for integration of new functionalities, automation, and high throughput in comparison to traditional well-plate assays. As endocrine disruption caused by environmental chemicals and pharmaceuticals represents a growing global health burden, the purpose of the current study was to contribute towards the miniaturization of the H295R steroidogenesis assay, from the well-plate to the microfluidic format. Microfluidic chip fabrication with the established well-plate material polystyrene (PS) is expensive and complicated; PDMS and thiol-ene were therefore tested as potential chip materials for microfluidic H295R cell culture, and evaluated in terms of cell attachment, cell viability, and steroid synthesis in the absence and presence of collagen surface modification. Additionally, spike-recovery experiments were performed, to investigate potential steroid adsorption to chip materials. Cell aggregation with poor steroid recoveries was observed for PDMS, while cells formed monolayer cultures on the thiol-ene chip material, with cell viability and steroid synthesis comparable to cells grown on a PS surface. As thiol-ene overall displayed more favorable properties for H295R cell culture, a microfluidic chip design and corresponding cell seeding procedure were successfully developed, achieving repeatable and uniform cell distribution in microfluidic channels. Finally, H295R perfusion culture on thiol-ene chips was investigated at different flow rates (20, 10, and 2.5 µL/min), and 13 steroids were detected in eluting cell medium over 48 h at the lowest flow rate. The presented work and results pave the way for a time-resolved microfluidic H295R steroidogenesis assay.


Assuntos
Microfluídica , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Esteroides/metabolismo , Técnicas de Cultura de Células
3.
Anal Bioanal Chem ; 415(6): 1173-1185, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36607393

RESUMO

Proteins, and more specifically glycoproteins, have been widely used as biomarkers, e.g., to monitor disease states. Bottom-up approaches based on mass spectrometry (MS) are techniques commonly utilized in glycoproteomics, involving protein digestion and glycopeptide enrichment. Here, a dual function polymeric thiol-ene-based microfluidic chip (TE microchip) was applied for the analysis of the proteins osteopontin (OPN) and immunoglobulin G (IgG), which have important roles in autoimmune diseases, in inflammatory diseases, and in coronavirus disease 2019 (COVID-19). TE microchips with larger internal surface features immobilized with trypsin were successfully utilized for OPN digestion, providing rapid and efficient digestion with a residence time of a few seconds. Furthermore, TE microchips surface-modified with ascorbic acid linker (TEA microchip) have been successfully utilized for IgG glycopeptide enrichment. To illustrate the use of the chips for more complex samples, they were applied to enrich IgG glycopeptides from human serum samples with antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The dual functional TE microchips could provide high throughput for online protein digestion and glycopeptide enrichment, showing great promise for future extended applications in proteomics and the study of related diseases.


Assuntos
COVID-19 , Glicopeptídeos , Humanos , Glicopeptídeos/química , Imunoglobulina G , Osteopontina , Compostos de Sulfidrila , Microfluídica , SARS-CoV-2 , Inflamação , Digestão
4.
J Sep Sci ; 45(1): 246-257, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34562339

RESUMO

Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli- and microfluidic formats. These are much more early-stage activities, but applications among others related to organ-on-chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli- and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research.

5.
Anal Chem ; 93(49): 16330-16340, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34843209

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a recognized method to study protein conformational dynamics and interactions. Proteins encompassing post-translational modifications (PTMs), such as disulfide bonds and glycosylations, present challenges to HDX-MS, as disulfide bond reduction and deglycosylation is often required to extract HDX information from regions containing these PTMs. In-solution deglycosylation with peptide-N4-(N-acetyl-ß-d-glucosaminyl)-asparagine amidase A (PNGase A) or PNGase H+ combined with chemical reduction using tris-(2-carboxyethyl)phosphine (TCEP) has previously been used for HDX-MS analysis of disulfide-linked glycoproteins. However, this workflow requires extensive manual sample preparation and consumes large amounts of enzyme. Furthermore, large amounts of TCEP and glycosidases often result in suboptimal liquid chromatography-mass spectrometry (LC-MS) performance. Here, we compare the in-solution activity of PNGase A, PNGase H+, and the newly discovered PNGase Dj under quench conditions and immobilize them onto thiol-ene microfluidic chips to create HDX-MS-compatible immobilized microfluidic enzyme reactors (IMERs). The IMERS retain deglycosylation activity, also following repeated use and long-term storage. Furthermore, we combine a PNGase Dj IMER, a pepsin IMER, and an electrochemical cell to develop an HDX-MS setup capable of efficient online disulfide-bond reduction, deglycosylation, and proteolysis. We demonstrate the applicability of this setup by mapping the epitope of a monoclonal antibody (mAb) on the heavily disulfide-bonded and glycosylated sema-domain of the tyrosine-protein kinase Met (SD c-Met). We achieve near-complete sequence coverage and extract HDX data to identify regions of SD c-Met involved in mAb binding. The described methodology thus presents an integrated and online workflow for improved HDX-MS analysis of challenging PTM-rich proteins.


Assuntos
Glicoproteínas , Espectrometria de Massa com Troca Hidrogênio-Deutério , Deutério , Dissulfetos , Mapeamento de Epitopos
6.
Anal Bioanal Chem ; 413(16): 4195-4205, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33954829

RESUMO

Non-aqueous capillary electrophoresis (NACE) on microfluidic chips is still a comparatively little explored area, despite the inherent advantages of this technique and its application potential for, in particular, lipophilic compounds. A main reason is probably the fact that implementation of NACE on microchips largely precluded the use of polymeric substrate materials. Here, we report non-aqueous electrophoresis on a thiol-ene-based microfluidic chip coupled to mass spectrometry via an on-chip ESI interface. Microchips with an integrated ESI emitter were fabricated using a double-molding approach. The durability of thiol-ene, when exposed to different organic solvents, was investigated with respect to swelling and decomposition of the polymer. Thiol-ene exhibited good stability against organic solvents such as methanol, ethanol, N-methylformamide, and formamide, which allows for a wide range of background electrolyte compositions. The integrated ESI emitter provided a stable spray with RSD% of the ESI signal ≤8%. Separation efficiency of the developed microchip electrophoresis system in different non-aqueous buffer solutions was tested with a mixture of several drugs of abuse. Ethanol- and methanol-based buffers provided comparable high theoretical plate numbers (≈ 6.6 × 104-1.6 × 105 m-1) with ethanol exhibiting the best separation efficiency. Direct coupling of non-aqueous electrophoresis to mass spectrometry allowed for fast analysis of hydrophobic compounds in the range of 0.1-5 µg mL-1 and 0.2-10 µg mL-1 and very good sensitivities (LOD ≈ 0.06-0.28 µg mL-1; LOQ ≈ 0.20-0.90 µg mL-1). The novel combination of non-aqueous CE on a microfluidic thiol-ene device and ESI-MS provides a mass-producible and highly versatile system for the analysis of, in particular, lipophilic compounds in a wide range of organic solvents. This offers promising potential for future applications in forensic, clinical, and environmental analysis. Graphical abstract.

7.
ACS Biomater Sci Eng ; 7(6): 2823-2834, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33826291

RESUMO

Albumin is widely used in pharmaceutical applications to alter the pharmacokinetic profile, improve efficacy, or decrease the toxicity of active compounds. Various drug delivery systems using albumin have been reported, including microparticles. Macroaggregated albumin (MAA) is one of the more common forms of albumin microparticles, which is predominately used for lung perfusion imaging when labeled with radionuclide technetium-99m (99mTc). These microparticles are formed by heat-denaturing albumin in a bulk solution, making it very challenging to control the size and dispersity of the preparations (coefficient of variation, CV, ∼50%). In this work, we developed an integrated microfluidics platform to create more tunable and precise MAA particles, the so-called microfluidic-MAA (M2A2). The microfluidic chips, prepared using off-stoichiometry thiol-ene chemistry, consist of a flow-focusing region followed by an extended and water-heated curing channel (85 °C). M2A2 particles with diameters between 70 and 300 µm with CVs between 10 and 20% were reliably prepared by adjusting the flow rates of the dispersed and continuous phases. To demonstrate the pharmaceutical utility of M2A2, particles were labeled with indium-111 (111In) and their distribution was assessed in healthy mice using nuclear imaging. 111In-M2A2 behaved similarly to 99mTc-MAA, with lung uptake predominately observed early on followed by clearance over time by the reticuloendothelial and renal systems. Our microfluidic chip represents an elegant and controllable method to prepare albumin microparticles for biomedical applications.


Assuntos
Microfluídica , Agregado de Albumina Marcado com Tecnécio Tc 99m , Albuminas , Animais , Temperatura Alta , Camundongos , Compostos Radiofarmacêuticos
8.
Anal Chim Acta ; 1140: 168-177, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218478

RESUMO

Mass spectrometry (MS) is a key technology for sensitive and high-resolution mass analysis of peptides and proteins. Sample clean-up and chromatographic separation is typically performed prior to MS analysis to limit adduct formation and ionization suppression. Usually, this requires a high-pressure LC pump system equipped with expensive metal chromatographic columns placed in-line of an electrospray ionization (ESI) source. Microfluidic devices coupled to MS have gained considerable attention, due to the promise of low manufacturing costs, low sample consumption and channels with a high surface area to volume ratio and tailorable functional groups. Here, we describe a thiol-ene microfluidic chip capable of fast chromatographic sample clean-up, concentration, and separation of complex protein and peptide mixtures with direct on-chip ESI. On-chip reversed-phase chromatography (RPC) was performed through an in-situ polymerized monolith frit for retaining inexpensive commercially available reversed-phase (RP) spherical particles, while on-chip ESI is achieved through an emitter monolithically implemented by precision micro milling. The on-chip integration of both RPC and ESI emitter allowed for a minimization of dead-volumes and enables very fast sample clean-up, efficient ionization, and mass analysis of peptides and proteins from complex matrices.


Assuntos
Microfluídica , Espectrometria de Massas por Ionização por Electrospray , Peptídeos , Proteínas , Compostos de Sulfidrila
9.
Int J Pharm ; 590: 119877, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32927003

RESUMO

The limited therapeutic option for respiratory infections caused by multi-drug resistant microbial pathogens is a major global health threat. Topical delivery of antibacterial combinations to the lung could dramatically enhance antibacterial activities and provide a means to overcome bacterial resistance development. The aim of the study was to investigate the potential of new inhalable dry powder combinations consisting of a fixed dose of aztreonam (Azt) and tobramycin (Tob) using a spray drying process, against antibiotic resistant Gram-negative respiratory pathogens. The interactions of Azt with Tob on resistant Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii were determined by calculating factional inhibitory concentration indices (FICI). A fixed concentration ratio of Azt and Tob that exhibited a synergistic antimicrobial effect was selected and formulated into inhalable dry powders by co-spray drying with and without L-leucine. The obtained dry powders were characterized with respect to the morphology, particle size distribution, solid state, moisture sorption behaviour, and in vitro dissolution. Storage stability, aerosol performance, and in vitro antibacterial activity were also evaluated. Inhalable dry powders consisting of Azt, Tob and L-leucine could be readily obtained via the spray drying process with a fine particle fraction of above 40% as determined using a next generation impactor. The co-spray drying process resulted in amorphous Azt/Tob dry powders with or without the addition of L-leucine as indicated by X-ray powder diffraction. The dissolution rates of the co-spray dried Azt/Tob dry powders were decreased, and the storage stability was improved with an increase in the proportion of L-leucine in the formulations. The inclusion of L-leucine did not affect the minimum inhibitory concentration and the co-spray dried powders reserved the synergistic antibacterial effects and exhibited enhanced antibacterial activities as compared to the individual antibiotic used alone on multidrug-resistant (Azt and Tob resistant) P. aeruginosa 25756 and A. baumannii K31. This study demonstrates that inhalable Azt/Tob dry powders using L-leucine as a moisture protector as well as a dispersing agent can be readily prepared by the spray drying process. This new inhalable fixed dose combinational dry powders may represent an alternative treatment against multidrug-resistant Gram-negative respiratory pathogens.


Assuntos
Anti-Infecciosos , Tobramicina , Administração por Inalação , Aerossóis , Antibacterianos/farmacologia , Aztreonam , Inaladores de Pó Seco , Tamanho da Partícula , Pós , Pseudomonas aeruginosa
10.
Electrophoresis ; 2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32949465

RESUMO

This review summarizes recent developments (over the past decade) in the field of microfluidics-based solutions for enantiomeric separation and detection. The progress in various formats of microchip electrodriven separations, such as MCE, microchip electrochromatography, and multidimensional separation techniques, is discussed. Innovations covering chiral stationary phases, surface coatings, and modification strategies to improve resolution, as well as integration with detection systems, are reported. Finally, combinations with other microfluidic functional units are also presented and highlighted.

11.
Eur J Pharm Sci ; 152: 105435, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32590123

RESUMO

Thiamphenicol (TAP) is reported to be effective against many respiratory pathogens including methicillin-resistant Staphylococcus aureus (MRSA). However, its poor solubility in water remains as one of the obstacles hindering the preparation of inhalable TAP formulations. The aim of this study was to improve the dissolution rate of TAP by micronization, and investigate whether variations in the dissolution rates of TAP would affect its in vitro antibacterial activity. Inhalable dry powders composed of TAP microcrystals (MDP) or nanocrystals (NDP) were prepared by using a wet ball milling method followed by spray drying. The morphology, solid state and in vitro dissolution of these dry powders were characterized. In vitro antibacterial activities of the inhalable TAP dry powders against a MRSA strain were evaluated. A dissolution-efficacy model relating antibacterial activity with time and dissolution rate was established via modified time-kill assays. Upon being spray dried, the volumetric mean diameters of MDP and NDP were found to be around 5 µm. Solid state analyses showed that MDP and NDP possess the same crystalline form as the raw materials. NDP exhibited faster in vitro dissolution rate as compared to MDP. The in vitro antibacterial efficiency of NDP and MDP were superior to raw TAP when the test was performed at a TAP concentration of 32 mg/L. Simulated colony forming units predictions were consistent with the result measured in the time-kill experiments with Raw TAP, MDP and NDP. This study characterized the effect of the dissolution rate of TAP dry powders on in vitro antibacterial activity against MRSA, and an enhanced antibacterial activity of TAP was observed with an increase in the dissolution rate of TAP from the dry powders at certain concentration ranges.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Tianfenicol , Administração por Inalação , Antibacterianos/farmacologia , Tamanho da Partícula , Pós , Solubilidade
12.
Anal Bioanal Chem ; 412(15): 3559-3571, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253474

RESUMO

One of the most attractive aspects of microfluidic chips is their capability of integrating several functional units into one single platform. In particular, enzymatic digestion and chemical separation are important steps in processing samples for many biochemical assays. This study presents the development and application of a free-flow electrophoresis microfluidic chip, and its upstream combination with an enzyme microreactor with immobilized pepsin in the same miniaturized platform. The whole microfluidic chip was fabricated by making use of thiol-ene click chemistry. As a proof of concept, different fluorescent dyes and labeled amino acids were continuously separated in the 2D electrophoretic channel. The protease pepsin was immobilized using a covalent linkage with ascorbic acid onto a high-surface monolithic support, also made of thiol-ene. To show the potential of the microfluidic chip for continuous sample preparation and analysis, an oligopeptide was enzymatically digested, and the resulting fragments were separated and collected in a single step (prior to mass spectrometric detection), without the need of further time-consuming liquid handling steps.


Assuntos
Eletroforese em Microchip/instrumentação , Dispositivos Lab-On-A-Chip , Peptídeos/análise , Compostos de Sulfidrila/química , Animais , Química Click , Enzimas Imobilizadas/química , Desenho de Equipamento , Espectrometria de Massas/instrumentação , Pepsina A/química , Peptídeos/isolamento & purificação , Proteólise , Suínos
13.
ACS Appl Mater Interfaces ; 12(9): 10080-10095, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32048822

RESUMO

While there is a steady growth in the number of microfluidics applications, the search for an optimal material that delivers the diverse characteristics needed for the numerous tasks is still nowhere close to being settled. Often overlooked and still underrepresented, the thiol-ene family of polymer materials has an enormous potential for applications in organs-on-a-chip, droplet productions, microanalytics, and point of care testing. In this review, the main characteristics of the thiol-ene materials are given, and advantages and drawbacks with respect to their potential in microfluidic chip fabrication are critically assessed. Select applications, which exploit the versatility of the thiol-ene polymers, are presented and discussed. It is concluded that, in particular, the rapid prototyping possibility combined with the material's resulting mechanical strength, solvent resistance, and biocompatibility, as well as the inherently easy surface functionalization, are strong factors to make thiol-ene polymers strong contenders for promising future materials for many biological, clinical, and technical lab-on-a-chip applications.


Assuntos
Disciplinas das Ciências Biológicas/instrumentação , Microfluídica/instrumentação , Polímeros/química , Compostos de Sulfidrila/química , Animais , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Polímeros/síntese química
14.
Electrophoresis ; 40(18-19): 2514-2521, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30916800

RESUMO

In the present work, a new supported liquid membrane (SLM) has been developed for on-chip electromembrane extraction of acidic drugs combined with HPLC or CE, providing significantly higher stability than those reported up to date. The target analytes are five widely used non-steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), diclofenac (DIC), naproxen (NAX), ketoprofen (KTP) and salicylic acid (SAL). Two different microchip devices were used, both consisted basically of two poly(methyl methacrylate) (PMMA) plates with individual channels for acceptor and sample solutions, respectively, and a 25 µm thick porous polypropylene membrane impregnated with the organic solvent in between. The SLM consisting of a mixture of 1-undecanol and 2-nitrophenyl octyl ether (NPOE) in a ratio 1:3 was found to be the most suitable liquid membrane for the extraction of these acidic drugs under dynamic conditions. It showed a long-term stability of at least 8 hours, a low system current around 20 µA, and recoveries over 94% for the target analytes. NPOE was included in the SLM to significantly decrease the extraction current compared to pure 1-undecanol, while the extraction properties was almost unaffected. Moreover, it has been successfully applied to the determination of the target analytes in human urine samples, providing high extraction efficiency.


Assuntos
Membranas Artificiais , Técnicas Analíticas Microfluídicas/instrumentação , Preparações Farmacêuticas , Cromatografia Líquida de Alta Pressão , Eletroforese em Microchip , Desenho de Equipamento , Feminino , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Lineares , Masculino , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Preparações Farmacêuticas/urina , Reprodutibilidade dos Testes
15.
ACS Appl Mater Interfaces ; 11(10): 9730-9739, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30747515

RESUMO

Oxygen plays a pivotal role in cellular homeostasis, and its partial pressure determines cellular function and fate. Consequently, the ability to control oxygen tension is a critical parameter for recreating physiologically relevant in vitro culture conditions for mammalian cells and microorganisms. Despite its importance, most microdevices and organ-on-a-chip systems to date overlook oxygen gradient parameters because controlling oxygen often requires bulky and expensive external instrumental setups. To overcome this limitation, we have adapted an off-stoichiometric thiol-ene-epoxy polymer to efficiently remove dissolved oxygen to below 1 hPa and also integrated this modified polymer into a functional biochip material. The relevance of using an oxygen scavenging material in microfluidics is that it makes it feasible to readily control oxygen depletion rates inside the biochip by simply changing the surface-to-volume aspect ratio of the microfluidic channel network as well as by changing the temperature and curing times during the fabrication process.


Assuntos
Técnicas de Cultura de Células , Microfluídica , Oxigênio/isolamento & purificação , Polímeros/química , Dispositivos Lab-On-A-Chip , Análise em Microsséries , Oxigênio/química , Compostos de Sulfidrila/química , Propriedades de Superfície
16.
Lab Chip ; 19(5): 798-806, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30688958

RESUMO

Polymeric microfluidic chips offer a number of benefits compared to their glass equivalents, including lower material costs and ease and flexibility of fabrication. However, the main drawback of polymeric materials is often their limited resistance to (organic) solvents. Previously, thiol-ene materials were shown to be more solvent resistant than most other commonly used polymers; however, they still fall short in "harsh" chemical environments, such as when chlorinated solvents are present. Here, we show that a simple yet effective treatment of thiol-ene materials results in exceptional solvent compatibility, even for very challenging chemical environments. Our approach, based on a temperature treatment, results in a 50-fold increase in the chloroform compatibility of thiol-enes (in terms of longevity). We show that prolonged heat exposure allows for the operation of the microfluidic chips in chloroform for several days with no discernable deformation or solvent-induced swelling. The method is applicable to many different thiol-ene-based materials, including commercially available formulations, and also when using other commonly considered "harsh" solvents. To demonstrate the utility of the solvent compatible thiol-enes for applications where chloroform is frequently employed, we show the continuous and uniform production of polymeric microspheres for drug delivery purposes over a period of 8 hours. The material thus holds great promise as an alternative choice for microfluidic applications requiring harsh chemical environments, a domain so far mainly restricted to glass chips.

17.
Anal Chem ; 91(2): 1309-1317, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30525463

RESUMO

Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has become a routine approach for sensitive analysis of the dynamic structure and interactions of proteins. However, transient conformational changes and weak affinity interactions found in many biological systems typically only perturb fast-exchanging amides in proteins. Detection of HDX changes for such amides require shorter deuterium labeling times (subsecond) than can be performed reproducibly by manual sample handling. Here, we describe the development and validation of a microfluidic chip capable of rapid on-chip protein labeling and reaction quenching. The fastHDX thiol-ene microchip is fabricated entirely using thiol-ene photochemistry. The chip has a three-channel design for introduction of protein sample, deuterated buffer, and quench buffer. Thiol-ene based monolith plugs (i.e., polymerized thiol-ene emulsions) situated within microchannels are generated in situ using a 3D-printed photolithography mask. We show that efficient on-chip mixing can be achieved at channel junctions by spatially confined in-channel monolith mixers. Using human hemoglobin (Hb), we demonstrate the ability of the chip to perform highly reproducible HDX in the 0.14-1.1 s time frame. The HDX of Hb at 0.14-1.1 s, resolved to peptide segments, correlates closely with structural features of the crystal structure of the Hb tetramer, with helices exhibiting no or minor HDX and loops undergoing pronounced HDX even at subsecond time scales. On-chip HDX of Hb at time points ranging from 0.14-1.1 s demonstrates the ability to distinguish fast exchanging amides and thus provides enhanced detection of transient structure and interactions in dynamic or exposed regions of proteins in solution.


Assuntos
Medição da Troca de Deutério/métodos , Deutério/química , Hemoglobinas/química , Hidrogênio/química , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Alcenos/química , Química Click , Medição da Troca de Deutério/instrumentação , Humanos , Marcação por Isótopo , Compostos de Sulfidrila/química
18.
Lab Chip ; 18(18): 2797-2805, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30123911

RESUMO

Here we present a water-in-air droplet platform for micro-compartmentalization for single molecule guided synthesis and analysis consisting of a flow-system hosting dense arrays of aqueous microdroplets on a glass surface surrounded by air. The droplets are formed in a few seconds by passing a waterfront over the array of hydrophilic spots surrounded by a hydrophobic coating, thus forming a micro-droplet array (MDA). The droplet volumes are tunable from approximately 50 femtoliter to 20 picoliter by adjusting the size of the hydrophilic spots. MDAs consisting of femtoliter volume droplets were stable for more than 24 hours in air at 37 °C in a reversibly sealed flow-system, thus allowing us to perform assays that require long incubations in the droplets. Using differently fluorescing liquids, it was further shown that droplets can be reformed on the same MDA several times by passing a new liquid plug over the surface, and that fluorescence from one reaction can be washed away with little to no carry-over, hence allowing for multistep reactions to be carried out on the system. The MDA created by an air/water interface supported digital immunoassays as was demonstrated by measuring the Aß42 peptide in cerebrospinal fluid of Alzheimers patients and control patients. To demonstrate a two step droplet assay, first, histidine tagged peptides were expressed in the droplets and bound to the droplet-enclosed surface. Subsequently, the his-tagged peptides were detected using enzyme-conjugated antibodies in a second droplet generation step. As such, the chip demonstrates features necessary for library preparations for high throughput screening applications.


Assuntos
Ar , Dispositivos Lab-On-A-Chip , Água/química , Interações Hidrofóbicas e Hidrofílicas , Reação em Cadeia da Polimerase , Biossíntese de Proteínas , Transcrição Gênica
19.
Anal Chem ; 90(15): 9322-9329, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29963855

RESUMO

This paper reports for the first time nanoliter-scale electromembrane extraction (nanoliter-scale EME) in a microfluidic device. Six basic drug substances (model analytes) were extracted from 70 µL samples of human whole blood, plasma, or urine through a supported liquid membrane (SLM) of 2-nitrophenyl octyl ether (NPOE) and into 6 nL of 10 mM formic acid as an acceptor solution. A DC potential of 15 V was applied across the SLM and served as the driving force for the extraction. The cathode was located in the acceptor solution. Because of the small area of the SLM (0.06 mm2), the system provided soft extraction with recoveries <1% for the 70 µL samples. Because of the large sample-to-acceptor-volume ratio, analytes were enriched in the acceptor solution. The enrichment capacity was 6-7-fold per minute, and after 60 min of operation, most of the model analytes were enriched by a factor of approximately 400. Because of the SLM and the direction of the applied electrical field, substantial sample cleanup was obtained. The chips were based on thiol-ene polymers, and the soft-lithography-fabrication procedure and the materials were selected in such a way that future mass production should be feasible. The chip-to-chip variability was within 23% RSD (and less than 10% in most cases) with respect to extraction recovery. Our findings have verified that nanoliter-scale EME is highly feasible and provides reliable data, and for future studies, the concept should be tested for applicability in connection with in vitro microphysiological systems, organ-on-a-chip systems, and point-of-care diagnostics. These are potential areas where the combination of soft extraction and high enrichment from limited sample volumes is required for reliable analytical measurements.


Assuntos
Dispositivos Lab-On-A-Chip , Membranas Artificiais , Nanotecnologia , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/urina , Estudos de Viabilidade , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes
20.
PLoS One ; 13(5): e0197101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746551

RESUMO

This paper presents the design and fabrication of a multi-layer and multi-chamber microchip system using thiol-ene 'click chemistry' aimed for drug transport studies across tissue barrier models. The fabrication process enables rapid prototyping of multi-layer microfluidic chips using different thiol-ene polymer mixtures, where porous Teflon membranes for cell monolayer growth were incorporated by masked sandwiching thiol-ene-based fluid layers. Electrodes for trans-epithelial electrical resistance (TEER) measurements were incorporated using low-melting soldering wires in combination with platinum wires, enabling parallel real-time monitoring of barrier integrity for the eight chambers. Additionally, the translucent porous Teflon membrane enabled optical monitoring of cell monolayers. The device was developed and tested with the Caco-2 intestinal model, and compared to the conventional Transwell system. Cell monolayer differentiation was assessed via in situ immunocytochemistry of tight junction and mucus proteins, P-glycoprotein 1 (P-gp) mediated efflux of Rhodamine 123, and brush border aminopeptidase activity. Monolayer tightness and relevance for drug delivery research was evaluated through permeability studies of mannitol, dextran and insulin, alone or in combination with the absorption enhancer tetradecylmaltoside (TDM). The thiol-ene-based microchip material and electrodes were highly compatible with cell growth. In fact, Caco-2 cells cultured in the device displayed differentiation, mucus production, directional transport and aminopeptidase activity within 9-10 days of cell culture, indicating robust barrier formation at a faster rate than in conventional Transwell models. The cell monolayer displayed high TEER and tightness towards hydrophilic compounds, whereas co-administration of an absorption enhancer elicited TEER-decrease and increased permeability similar to the Transwell cultures. The presented cell barrier microdevice constitutes a relevant tissue barrier model, enabling transport studies of drugs and chemicals under real-time optical and functional monitoring in eight parallel chambers, thereby increasing the throughput compared to previously reported microdevices.


Assuntos
Dextranos , Insulina , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Maltose/análogos & derivados , Manitol , Técnicas Analíticas Microfluídicas , Rodamina 123 , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Dextranos/farmacocinética , Dextranos/farmacologia , Humanos , Insulina/farmacocinética , Insulina/farmacologia , Mucosa Intestinal/citologia , Maltose/farmacocinética , Maltose/farmacologia , Manitol/farmacocinética , Manitol/farmacologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Rodamina 123/farmacocinética , Rodamina 123/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...