Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32322576

RESUMO

The mechanical properties of the cellular microenvironment play a crucial role in modulating cell function, and many pathophysiological processes are accompanied by variations in extracellular matrix (ECM) stiffness. Lysyl oxidase (LOx) is one of the enzymes involved in several ECM-stiffening processes. Here, we engineered poly(ethylene glycol) (PEG)-based hydrogels with controlled mechanical properties in the range typical of soft tissues. These hydrogels were functionalized featuring free primary amines, which allows an additional chemical LOx-responsive behavior with increase in crosslinks and hydrogel elastic modulus, mimicking biological ECM-stiffening mechanisms. Hydrogels with elastic moduli in the range of 0.5-4 kPa were obtained after a first photopolymerization step. The increase in elastic modulus of the functionalized and enzyme-responsive hydrogels was also characterized after the second-step enzymatic reaction, recording an increase in hydrogel stiffness up to 0.5 kPa after incubation with LOx. Finally, hydrogel precursors containing HepG2 (bioinks) were used to form three-dimensional (3D) in vitro models to mimic hepatic tissue and test PEG-based hydrogel biocompatibility. Hepatic functional markers were measured up to 7 days of culture, suggesting further use of such 3D models to study cell mechanobiology and response to dynamic variation of hydrogels stiffness. The results show that the functionalized hydrogels presented in this work match the mechanical properties of soft tissues, allow dynamic variations of hydrogel stiffness, and can be used to mimic changes in the microenvironment properties of soft tissues typical of inflammation and pathological changes at early stages (e.g., fibrosis, cancer).

2.
Tissue Eng Part A ; 23(17-18): 946-957, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28437178

RESUMO

The development of scaffold formulations based on extracellular matrix (ECM)-inspired synthetic materials constitutes an important resource for the advance of cell-based therapies in bone tissue engineering approaches, where both cell and scaffold implantation are often needed. Culturing cells on porous microcarriers (MCs) allows cell expansion in a three-dimensional microenvironment and constitutes a possible solution for minimally invasive cell and scaffold simultaneous delivery, but the reduced pore dimension and pore interconnection diameter of several commercially available MCs limits de facto cell ingrowth, and ultimately their suitability for in vivo cell delivery. In this study we investigated the potential of a new macroporous MC based on a collagen I-based recombinant peptide (Cellnest™) for C2C12 cells and human bone marrow-derived mesenchymal stromal cells (hBMSCs) expansion and we analyzed the influence of dehydrothermal (DHT), hexamethylene diisocyanate (HMDIC), and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) cross-linking strategies on cell vitality, proliferation, and hBMSCs differentiation. We established a double emulsification protocol for the manufacturing of MCs characterized by external pores of 20-40 µm diameter, 73% porosity, and 20 ± 3 µm pore interconnection diameter supporting cell ingrowth and proliferation into the MC. MCs cross-linked with DHT and HMDIC supported higher cell proliferation comparing to a commercially available equivalent over the course of 7 days and resulted in higher cell yield by day 28. Moreover, while hBMSCs expansion on Cellnest-MCs did not lead to a significant upregulation of the early markers of osteogenic differentiation Col1a1 and Runx2, their differentiation potential into the osteogenic lineage was preserved when cultured in differentiation medium, as confirmed by mineralized ECM deposition. We believe that Cellnest-MCs will help in reaching clinically relevant cell quantities and ultimately help in accelerating the translation of cell-based therapies for bone tissue engineering in the clinical practice.


Assuntos
Células da Medula Óssea/metabolismo , Calcificação Fisiológica , Colágeno Tipo I/química , Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Peptídeos/química , Alicerces Teciduais/química , Células da Medula Óssea/citologia , Linhagem Celular , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Porosidade , Proteínas Recombinantes/química
3.
Cell Mol Biol Lett ; 21: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28536613

RESUMO

This study focused on an extract from fermented flour from the Lady Joy variety of the common bean Phaseolus vulgaris. The extract, Lady Joy lysate (Lys LJ), is enriched in antioxidant compounds during the fermentation. We assessed it for its protective effect on endothelial cells treated with oxidized-LDL (ox-LDL). The oxidative stress was determined by measuring the contents of thiobarbituric acid-reactive substances and reactive oxygen metabolites. ICAM-1, ET-1 and IL-6 concentrations were assessed using ELISA. LOX-1 and CHOP expression were analyzed using both quantitative RT-PCR and ELISA or western blotting. Ox-LDL treatment induced significant oxidative stress, which was strongly reduced by pre-treatment with the extract. The ox-LDL exposure significantly enhanced ICAM-1, IL-6 and ET-1 levels over basal levels. Lys LJ pre-treatment exerted an inhibitory effect on ox-LDL-induced endothelial activation with ICAM-1 levels comparable to those for the untreated cells. IL-6 and ET-1 production, although reduced, was still significantly higher than for the control. Both LOX-1 and CHOP expression were upregulated after ox-LDL exposure, but this effect was significantly decreased after Lys LJ pre-treatment. Lys LJ alone did not alter the ICAM-1, IL-6 and ET-1 concentrations or CHOP expression, but it did significantly lower the LOX-1 protein level. Our data suggest that Lys LJ is an effective antioxidant that is able to inhibit the oxidation process, but that it is only marginally active against inflammation and ET-1 production in HMEC-1 exposed to ox-LDL.


Assuntos
Células Endoteliais/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Lipoproteínas LDL/toxicidade , Extratos Vegetais/farmacologia , Receptores Depuradores Classe E/genética , Fator de Transcrição CHOP/genética , Antioxidantes/farmacologia , Células Cultivadas , Regulação para Baixo , Células Endoteliais/metabolismo , Fermentação , Farinha , Humanos , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Phaseolus , Receptores Depuradores Classe E/efeitos dos fármacos , Fator de Transcrição CHOP/efeitos dos fármacos
4.
J Biomed Nanotechnol ; 11(8): 1451-60, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26295145

RESUMO

Highly reproducible Nano-in-Micro constructs are fabricated to provide a well-defined and self-reporting biomimetic environment for hepatocytes. Based on a protein/hydrogel formulation with controlled shape, size and composition, the constructs enable efficient nutrient exchange and provide an adhesive 3D framework to cells. Co-encapsulation of hepatocytes and ratiometric optical nanosensors with pH sensitivity in the physiological range allows continuous monitoring of the microenvironment. The lobule-sized microbeads are fabricated using an automated droplet generator, Sphyga (Spherical Hydrogel Generator) combining alginate, collagen, decellularized hepatic tissue, pH-nanosensors and hepatocytes. The pH inside the Nano-in-Micro constructs is monitored during culture, while assaying media for hepatic function and vitality markers. Although the local pH changes by several units during bead fabrication, when encapsulated cells are most likely to undergo stress, it is stable and buffered by cell culture media thereafter. Albumin secretion and urea production are significantly higher in the microbeads compared with controls, indicating that the encapsulated Nano-in-Micro environment is conducive to enhanced hepatic function.


Assuntos
Materiais Biomiméticos/síntese química , Matriz Extracelular/química , Hepatócitos/fisiologia , Hidrogéis/química , Nanopartículas/química , Engenharia Tecidual/métodos , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Proteínas da Matriz Extracelular/química , Hepatócitos/citologia , Humanos , Teste de Materiais , Nanopartículas/ultraestrutura
5.
Cell Mol Biol Lett ; 20(1): 102-16, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26204396

RESUMO

The role and beneficial effects of plant and food extracts against various diseases induced by oxidative stress have received much attention in recent years. Legumes are rich in bioactive compounds, and some studies suggest a correlation between their consumption and a reduced incidence of diseases. Primary cultures of rat hepatocytes were used to investigate whether and how an extract obtained from a fermented powder of bean named Lady Joy (Phaseolus vulgaris L.) is able to regulate antioxidant and detoxifying enzymes through the NRF2 pathway, inhibit NF-kB activation, and reduce H2O2-induced endoplasmic reticulum (ER) stress. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by Lady Joy treatment. Western blot showed that Nrf2 was activated by Lady Joy treatment. Also, cells treated with this fermented bean were partially protected against NF-kB activation resulting from H2O2 stress. As a link between oxidative stress and ER dysfunction is hypothesized, we verified whether Lady Joy was able to protect cells from H2O2-induced ER stress, by studying the response of the proteins CHOP, BiP and caspase 12. The results of this study show that Lady Joy can induce the Nrf2 pathway, inhibit NF-kB, and protect ER from stress induced by H2O2.


Assuntos
Antioxidantes , Hepatócitos , Phaseolus , Extratos Vegetais , Animais , Ratos , Antioxidantes/farmacologia , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Medicina Herbária , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Cultura Primária de Células , Fator 2 Relacionado a NF-E2
6.
Biotechnol J ; 9(9): 1175-84, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24756869

RESUMO

Permeability studies across epithelial barriers are of primary importance in drug delivery as well as in toxicology. However, traditional in vitro models do not adequately mimic the dynamic environment of physiological barriers. Here, we describe a novel two-chamber modular bioreactor for dynamic in vitro studies of epithelial cells. The fluid dynamic environment of the bioreactor was characterized using computational fluid dynamic models and measurements of pressure gradients for different combinations of flow rates in the apical and basal chambers. Cell culture experiments were then performed with fully differentiated Caco-2 cells as a model of the intestinal epithelium, comparing the effect of media flow applied in the bioreactor with traditional static transwells. The flow increases barrier integrity and tight junction expression of Caco-2 cells with respect to the static controls. Fluorescein permeability increased threefold in the dynamic system, indicating that the stimulus induced by flow increases transport across the barrier, closely mimicking the in vivo situation. The results are of interest for studying the influence of mechanical stimuli on cells, and underline the importance of developing more physiologically relevant in vitro tissue models. The bioreactor can be used to study drug delivery, chemical, or nanomaterial toxicity and to engineer barrier tissues.


Assuntos
Técnicas de Cocultura/métodos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Fluoresceína/metabolismo , Mucosa Intestinal/metabolismo , Reatores Biológicos , Células CACO-2 , Técnicas de Cultura de Células , Humanos , Modelos Biológicos , Permeabilidade
7.
PLoS One ; 8(12): e83538, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391783

RESUMO

Many plants exhibit antioxidant properties which may be useful in the prevention of oxidative stress reactions, such as those mediated by the formation of free radical species in different pathological situations. In recent years a number of studies have shown that whole grain products in particular have strong antioxidant activity. Primary cultures of rat hepatocytes were used to investigate whether and how a fermented powder of wheat (Lisosan G) is able to modulate antioxidant and detoxifying enzymes, and whether or not it can activate Nrf2 transcription factor or inhibit NF-kB activation. All of the antioxidant and detoxifying enzymes studied were significantly up-regulated by 0.7 mg/ml Lisosan G treatment. In particular, NAD(P)H: quinone oxidoreductase and heme oxygenase-1 were induced, although to different degrees, at the transcriptional, protein and/or activity levels by the treatment. As for the Nrf2 transcription factor, a partial translocation of its protein from the cytosol to the nucleus after 1 h of Lisosan G treatment was revealed by immunoblotting. Lisosan G was also observed to decrease H2O2-induced toxicity Taken together, these results show that this powder of wheat is an effective inducer of ARE/Nrf2-regulated antioxidant and detoxifying genes and has the potential to inhibit the translocation of NF-kB into the nucleus.


Assuntos
Antioxidantes/metabolismo , Antioxidantes/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Extratos Vegetais/farmacologia , Triticum/química , Animais , Células Cultivadas , Fermentação , Peróxido de Hidrogênio/toxicidade , Desintoxicação Metabólica Fase II , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Preparações de Plantas , Pós , Transporte Proteico/efeitos dos fármacos , Ratos
8.
Xenobiotica ; 40(8): 525-35, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20509749

RESUMO

In this study, the expression and inducibility of CYP2C33, CYP2C42, CYP2C49, CYP2B22, CYP3A22, CYP3A29, and CYP3A46 were investigated at activity and/or transcriptional level in liver, kidney, small intestine, respiratory, and olfactory nasal mucosa of control and phenobarbital (PB)-treated pigs. PB treatment resulted in an up-regulation of mRNA levels of all analyzed CYPs in liver, of CYP2C42 and CYP2C49 in kidney, of CYP2C42, CYP2C49, CYP2B22, and CYP3As in small intestine. In liver microsomes from PB-treated pigs, these transcriptional activations were accompanied by an increase of various marker activities of human CYP2B6, CYP3As, CYP2C9, CYP2C19. Among the extrahepatic tissues, a significant induction by PB was observed only in kidney for the marker activities of CYP2C9. Taken together, our results demonstrated that the PB administration in pigs induced at least in liver, in addition to CYP2B22 and CYP3As, the expression of CYP2C33, CYP2C42, and CYP2C49 at transcriptional and activity levels. Furthermore our findings showed that the catalytic activities of porcine CYP2Cs are different amongst those observed and with respect to the human counterparts. Thus, the use of pigs as a model for humans in studies using drugs as substrates and/or inducers of CYP2Cs should be considered carefully.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Intestino Delgado/enzimologia , Rim/enzimologia , Fígado/enzimologia , Fenobarbital/farmacologia , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , Mucosa Nasal/enzimologia , Mucosa Nasal/metabolismo , RNA Mensageiro/metabolismo , Suínos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...