Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 4(6): 812-828, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37277530

RESUMO

The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Medicina de Precisão , Fatores de Transcrição/metabolismo , Transdução de Sinais
2.
Cancer Discov ; 11(3): 778-793, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33208393

RESUMO

Hippo pathway dysregulation occurs in multiple cancers through genetic and nongenetic alterations, resulting in translocation of YAP to the nucleus and activation of the TEAD family of transcription factors. Unlike other oncogenic pathways such as RAS, defining tumors that are Hippo pathway-dependent is far more complex due to the lack of hotspot genetic alterations. Here, we developed a machine-learning framework to identify a robust, cancer type-agnostic gene expression signature to quantitate Hippo pathway activity and cross-talk as well as predict YAP/TEAD dependency across cancers. Further, through chemical genetic interaction screens and multiomics analyses, we discover a direct interaction between MAPK signaling and TEAD stability such that knockdown of YAP combined with MEK inhibition results in robust inhibition of tumor cell growth in Hippo dysregulated tumors. This multifaceted approach underscores how computational models combined with experimental studies can inform precision medicine approaches including predictive diagnostics and combination strategies. SIGNIFICANCE: An integrated chemicogenomics strategy was developed to identify a lineage-independent signature for the Hippo pathway in cancers. Evaluating transcriptional profiles using a machine-learning method led to identification of a relationship between YAP/TAZ dependency and MAPK pathway activity. The results help to nominate potential combination therapies with Hippo pathway inhibition.This article is highlighted in the In This Issue feature, p. 521.


Assuntos
Quimioinformática/métodos , Biologia Computacional/métodos , Genômica/métodos , Via de Sinalização Hippo , Sistema de Sinalização das MAP Quinases , Aprendizado de Máquina , Transdução de Sinais , Humanos
3.
Cell Rep ; 31(12): 107809, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579935

RESUMO

The transcriptional enhanced associate domain (TEAD) family of transcription factors serves as the receptors for the downstream effectors of the Hippo pathway, YAP and TAZ, to upregulate the expression of multiple genes involved in cellular proliferation and survival. Recent work identified TEAD S-palmitoylation as critical for protein stability and activity as the lipid tail extends into a hydrophobic core of the protein. Here, we report the identification and characterization of a potent small molecule that binds the TEAD lipid pocket (LP) and disrupts TEAD S-palmitoylation. Using a variety of biochemical, structural, and cellular methods, we uncover that TEAD S-palmitoylation functions as a TEAD homeostatic protein level checkpoint and that dysregulation of this lipidation affects TEAD transcriptional activity in a dominant-negative manner. Furthermore, we demonstrate that targeting the TEAD LP is a promising therapeutic strategy for modulating the Hippo pathway, showing tumor stasis in a mouse xenograft model.


Assuntos
Lipídeos/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Humanos , Lipoilação , Camundongos , Proteínas Repressoras/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Fatores de Transcrição/agonistas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 17(7): 1441-1453, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29695635

RESUMO

The receptor tyrosine kinase HER2 is overexpressed in approximately 20% of breast cancer, and its amplification is associated with reduced survival. Trastuzumab emtansine (Kadcyla, T-DM1), an antibody-drug conjugate that is comprised of trastuzumab covalently linked to the antimitotic agent DM1 through a stable linker, was designed to selectively deliver DM1 to HER2-overexpressing tumor cells. T-DM1 is approved for the treatment of patients with HER2-positive metastatic breast cancer following progression on trastuzumab and a taxane. Despite the improvement in clinical outcome, many patients who initially respond to T-DM1 treatment eventually develop progressive disease. The mechanisms that contribute to T-DM1 resistance are not fully understood. To this end, we developed T-DM1-resistant in vitro models to examine the mechanisms of acquired T-DM1 resistance. We demonstrate that decreased HER2 and upregulation of MDR1 contribute to T-DM1 resistance in KPL-4 T-DM1-resistant cells. In contrast, both loss of SLC46A3 and PTEN deficiency play a role in conferring resistance in BT-474M1 T-DM1-resistant cells. Our data suggest that these two cell lines acquire resistance through distinct mechanisms. Furthermore, we show that the KPL-4 T-DM1 resistance can be overcome by treatment with an inhibitor of MDR1, whereas a PI3K inhibitor can rescue PTEN loss-induced resistance in T-DM1-resistant BT-474M1 cells. Our results provide a rationale for developing therapeutic strategies to enhance T-DM1 clinical efficacy by combining T-DM1 and other inhibitors that target signaling transduction or resistance pathways. Mol Cancer Ther; 17(7); 1441-53. ©2018 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor ErbB-2/genética , Trastuzumab/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Camundongos , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell ; 168(5): 817-829.e15, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28215705

RESUMO

Investigating therapeutic "outliers" that show exceptional responses to anti-cancer treatment can uncover biomarkers of drug sensitivity. We performed preclinical trials investigating primary murine acute myeloid leukemias (AMLs) generated by retroviral insertional mutagenesis in KrasG12D "knockin" mice with the MEK inhibitor PD0325901 (PD901). One outlier AML responded and exhibited intrinsic drug resistance at relapse. Loss of wild-type (WT) Kras enhanced the fitness of the dominant clone and rendered it sensitive to MEK inhibition. Similarly, human colorectal cancer cell lines with increased KRAS mutant allele frequency were more sensitive to MAP kinase inhibition, and CRISPR-Cas9-mediated replacement of WT KRAS with a mutant allele sensitized heterozygous mutant HCT116 cells to treatment. In a prospectively characterized cohort of patients with advanced cancer, 642 of 1,168 (55%) with KRAS mutations exhibited allelic imbalance. These studies demonstrate that serial genetic changes at the Kras/KRAS locus are frequent in cancer and modulate competitive fitness and MEK dependency.


Assuntos
Antineoplásicos/uso terapêutico , Benzamidas/uso terapêutico , Neoplasias Colorretais/genética , Difenilamina/análogos & derivados , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Linhagem Celular Tumoral , Evolução Clonal , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Difenilamina/farmacologia , Difenilamina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Mutação , Retroviridae
6.
Mol Cancer Ther ; 13(6): 1599-610, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24651527

RESUMO

Therapies targeting the mitogen-activated protein (MAP) kinase pathway in melanoma have produced significant clinical responses; however, duration of response is limited by acquisition of drug resistance. Rational drug combinations may improve outcomes in this setting. We assessed the therapeutic combination of an antibody-drug conjugate (ADC) targeting the endothelin B receptor (EDNRB) with small-molecule inhibitors of the MAP kinase signaling pathway in melanoma. Cell lines and tumor models containing either mutant BRAF or NRAS, or wild-type for both, were exposed to small-molecule inhibitors of BRAF and MEK. Expression of EDNRB was analyzed and the therapeutic impact of combining the anti-EDNRB ADC with the BRAF and MEK inhibitors was assessed. Increased expression of EDNRB in response to inhibition of BRAF and/or MEK was observed and augmented the antitumor activity of the ADC. Enhanced target expression and ADC antitumor activity were realized irrespective of the response of the tumor model to the BRAF or MEK inhibitors alone and could be achieved in melanoma with mutant NRAS, BRAF, or neither mutation. Cells that acquired resistance to BRAF inhibition through long-term culture retained drug-induced elevated levels of EDNRB expression. Expression of EDNRB was not enhanced in normal human melanocytes by inhibition of BRAF and the combination of the ADC with MAPK inhibitors was well-tolerated in mice. The anti-EDNRB ADC combines well with BRAF and MEK inhibitors and could have therapeutic use in the majority of human melanoma cases.


Assuntos
Antagonistas do Receptor de Endotelina B/administração & dosagem , Melanoma/tratamento farmacológico , Melanoma/genética , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/patologia , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Receptor de Endotelina B/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Neoplasia ; 15(12): 1314-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24403854

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a metabolite essential for cell survival and generated de novo from tryptophan or recycled from nicotinamide (NAM) through the nicotinamide phosphoribosyltransferase (NAMPT)-dependent salvage pathway. Alternatively, nicotinic acid (NA) is metabolized to NAD through the nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1)-dependent salvage pathway. Tumor cells are more reliant on the NAMPT salvage pathway making this enzyme an attractive therapeutic target. Moreover, the therapeutic index of NAMPT inhibitors may be increased by in NAPRT-deficient tumors by NA supplementation as normal tissues may regenerate NAD through NAPRT1. To confirm the latter, we tested novel NAMPT inhibitors, GNE-617 and GNE-618, in cell culture- and patient-derived tumor models. While NA did not protect NAPRT1-deficient tumor cell lines from NAMPT inhibition in vitro, it rescued efficacy of GNE-617 and GNE-618 in cell culture- and patient-derived tumor xenografts in vivo. NA co-treatment increased NAD and NAM levels in NAPRT1-deficient tumors to levels that sustained growth in vivo. Furthermore, NAM co-administration with GNE-617 led to increased tumor NAD levels and rescued in vivo efficacy as well. Importantly, tumor xenografts remained NAPRT1-deficient in the presence of NA, indicating that the NAPRT1-dependent pathway is not reactivated. Protection of NAPRT1-deficient tumors in vivo may be due to increased circulating levels of metabolites generated by mouse liver, in response to NA or through competitive reactivation of NAMPT by NAM. Our results have important implications for the development of NAMPT inhibitors when considering NA co-treatment as a rescue strategy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Compostos Heterocíclicos com 2 Anéis/administração & dosagem , Pentosiltransferases/deficiência , Sulfonas/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Citocinas/antagonistas & inibidores , Citocinas/genética , Citocinas/metabolismo , Sinergismo Farmacológico , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Nus , NAD/metabolismo , Niacina/administração & dosagem , Niacinamida/administração & dosagem , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Pentosiltransferases/genética , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Nucl Med ; 53(9): 1454-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22872740

RESUMO

UNLABELLED: TENB2, also known as tomoregulin or transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains, is a transmembrane proteoglycan overexpressed in human prostate tumors. This protein is a promising target for antimitotic monomethyl auristatin E (MMAE)-based antibody-drug conjugate (ADC) therapy. Nonlinear pharmacokinetics in normal mice suggested that antigen expression in normal tissues may contribute to targeted mediated disposition. We evaluated a predosing strategy with unconjugated antibody to block ADC uptake in target-expressing tissues in a mouse model while striving to preserve tumor uptake and efficacy. METHODS: Unconjugated, unlabeled antibody was preadministered to mice bearing the TENB2-expressing human prostate explant model, LuCaP 77, followed by a single administration of (111)In-labeled anti-TENB2-MMAE for biodistribution and SPECT/CT studies. A tumor-growth-inhibition study was conducted to determine the pharmacodynamic consequences of predosing. RESULTS: Preadministration of anti-TENB2 at 1 mg/kg significantly increased blood exposure of the radiolabeled ADC and reduced intestinal, hepatic, and splenic uptake while not affecting tumor accretion. Similar tumor-to-heart ratios were measured by SPECT/CT at 24 h with and without the predose. Consistent with this, the preadministration of 0.75 mg/kg did not interfere with efficacy in a tumor-growth study dosed at 0.75 mg or 2.5 mg of ADC per kilogram. CONCLUSION: Overall, the potential to mask peripheral, nontumor antigen uptake while preserving tumor uptake and efficacy could ameliorate toxicity and may significantly affect future dosing strategies for ADCs.


Assuntos
Anticorpos/farmacologia , Imunoconjugados/imunologia , Imunoconjugados/metabolismo , Radioisótopos de Índio/uso terapêutico , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias da Próstata/metabolismo , Animais , Anticorpos/imunologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Imunoconjugados/uso terapêutico , Marcação por Isótopo , Masculino , Camundongos , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...