Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 22(11): 617-628, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32873509

RESUMO

BACKGROUND: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different disease indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. A key contributor to the present high cost of goods sold for MSC manufacturing is the need to create master cell banks from multiple donors, which leads to variability in large-scale manufacturing runs. Therefore, the availability of large single donor depots of primary MSCs would greatly benefit the cell therapy market by reducing costs associated with manufacturing. METHODS: We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs to distinguish this population from loosely associated MSCs recovered through aspiration or rinsing of the bone marrow compartment. RESULTS: Pilot banking and expansion were performed with vBA-MSCs obtained from 3 deceased donors, and it was demonstrated that bank sizes averaging 2.9 × 108 ± 1.35 × 108 vBA-MSCs at passage 1 were obtainable from only 5 g of digested VB bone fragments. Each bank of cells demonstrated robust proliferation through a total of 9 passages, without significant reduction in population doubling times. The theoretical total cell yield from the entire amount of bone fragments (approximately 300 g) from each donor with limited expansion through 4 passages is 100 trillion (1 × 1014) vBA-MSCs, equating to over 105 doses at 10 × 106 cells/kg for an average 70-kg recipient. DISCUSSION: Thus, we have established a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.


Assuntos
Células da Medula Óssea/citologia , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Corpo Vertebral/citologia , Adolescente , Adulto , Antígenos de Superfície/metabolismo , Adesão Celular , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Humanos , Ativação Linfocitária/imunologia , Masculino , Fenótipo , Linfócitos T/imunologia , Adulto Jovem
2.
J Transl Med ; 18(1): 300, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758261

RESUMO

BACKGROUND: Deceased organ donors represent an untapped source of therapeutic bone marrow (BM) that can be recovered in 3-5 times the volume of that obtained from living donors, tested for quality, cryopreserved, and banked indefinitely for future on-demand use. A challenge for a future BM banking system will be to manage the prolonged ischemia times that are inevitable when bones procured at geographically-dispersed locations are shipped to distant facilities for processing. Our objectives were to: (a) quantify, under realistic field conditions, the relationship between ischemia time and the quality of hematopoietic stem and progenitor cells (HSPCs) derived from deceased-donor BM; (b) identify ischemia-time boundaries beyond which HSPC quality is adversely affected; (c) investigate whole-body cooling as a strategy for preserving cell quality; and (d) investigate processing experience as a variable affecting quality. METHODS: Seventy-five bones from 62 donors were analyzed for CD34+ viability following their exposure to various periods of warm-ischemia time (WIT), cold-ischemia time (CIT), and body-cooling time (BCT). Regression models were developed to quantify the independent associations of WIT, CIT, and BCT, with the viability and function of recovered HSPCs. RESULTS: Results demonstrate that under "real-world" scenarios: (a) combinations of warm- and cold-ischemia times favorable to the recovery of high-quality HSPCs are achievable (e.g., CD34+ cell viabilities in the range of 80-90% were commonly observed); (b) body cooling prior to bone recovery is detrimental to cell viability (e.g., CD34+ viability < 73% with, vs. > 89% without body cooling); (c) vertebral bodies (VBs) are a superior source of HSPCs compared to ilia (IL) (e.g., %CD34+ viability > 80% when VBs were the source, vs. < 74% when IL were the source); and (d) processing experience is a critical variable affecting quality. CONCLUSIONS: Our models can be used by an emerging BM banking system to formulate ischemia-time tolerance limits and data-driven HSPC quality-acceptance standards.


Assuntos
Medula Óssea , Doadores de Tecidos , Antígenos CD34 , Células da Medula Óssea , Transplante de Medula Óssea , Células-Tronco Hematopoéticas , Humanos , Isquemia
3.
Cell Metab ; 22(3): 472-84, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26256392

RESUMO

Mitochondrial reactive oxygen species (ROS) play a central role in most aging-related diseases. ROS are produced at the respiratory chain that demands NADH for electron transport and are eliminated by enzymes that require NADPH. The nicotinamide nucleotide transhydrogenase (Nnt) is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Here, we show that pathological metabolic demand reverses the direction of the Nnt, consuming NADPH to support NADH and ATP production, but at the cost of NADPH-linked antioxidative capacity. In heart, reverse-mode Nnt is the dominant source for ROS during pressure overload. Due to a mutation of the Nnt gene, the inbred mouse strain C57BL/6J is protected from oxidative stress, heart failure, and death, making its use in cardiovascular research problematic. Targeting Nnt-mediated ROS with the tetrapeptide SS-31 rescued mortality in pressure overload-induced heart failure and could therefore have therapeutic potential in patients with this syndrome.


Assuntos
Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , NADP Trans-Hidrogenases/metabolismo , NADP/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Glutationa/metabolismo , Insuficiência Cardíaca/patologia , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/patologia , Espécies Reativas de Oxigênio/metabolismo
4.
Methods Enzymol ; 556: 99-121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25857779

RESUMO

In cases where membrane protein production attempts in more conventional Escherichia coli-based systems have failed, a solution is to resort to a system based on the nonpathogenic epsilon-proteobacterium Wolinella succinogenes. This approach has been demonstrated to be successful for structural and mechanistic analyses not only for homologous production of W. succinogenes membrane proteins but also for the heterologous production of membrane protein complexes from the human pathogens Helicobacter pylori and Campylobacter jejuni. The procedure to establish a system for the production of native and variant enzymes in W. succinogenes is presented in detail for the examples of the quinol:fumarate reductase and the SdhABE complexes of W. succinogenes. Subsequently, further projects using W. succinogenes as expression host are covered.


Assuntos
Clonagem Molecular/métodos , Proteínas de Membrana/genética , Transformação Genética , Wolinella/genética , Cromatografia em Gel , Cristalografia por Raios X , Vetores Genéticos/genética , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Wolinella/crescimento & desenvolvimento
5.
J Med Chem ; 56(23): 9530-41, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24251984

RESUMO

Novel naphthoquinones were designed, synthesized, and tested as substrate-based inhibitors against the membrane-embedded protein quinol/fumarate reductase (QFR) from Wolinella succinogenes, a target closely related to QFRs from the human pathogens Helicobacter pylori and Campylobacter jejuni. For a better understanding of the hitherto structurally unexplored substrate binding pocket, a structure-activity relationship (SAR) study was carried out. Analogues of lawsone (2-hydroxy-1,4-naphthoquinone 3a) were synthesized that vary in length and size of the alkyl side chains (3b-k). A combined study on the prototropic tautomerism of 2-hydroxy-1,4-naphthoquinones series indicated that the 1,4-tautomer is the more stable and biologically relevant isomer and that the presence of the hydroxyl group is crucial for inhibition. Furthermore, 2-bromine-1,4-naphthoquinone (4a-c) and 2-methoxy-1,4-naphthoquinone (5a-b) series were also discovered as novel and potent inhibitors. Compounds 4a and 4b showed IC50 values in low micromolar range in the primary assay and no activity in the counter DT-diaphorase assay.


Assuntos
Inibidores Enzimáticos/síntese química , Naftoquinonas/síntese química , Oxirredutases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Naftoquinonas/farmacologia , Ressonância Magnética Nuclear Biomolecular , Relação Estrutura-Atividade , Wolinella/enzimologia
6.
Drug Metabol Drug Interact ; 20(1-2): 11-24, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15283300

RESUMO

The pharmacokinetics and metabolism of the antioxidant and reactive oxygen scavenger alpha-phenyl-N-tert-butyl nitrone (PBN) was examined in the male cynomolgus monkey after intravenous administration. Following an i.v. bolus dose of 5 mg/kg, plasma concentrations of PBN declined in a bi-exponential fashion. PBN demonstrated a moderate plasma clearance (CL(p) = 27.02 +/- 6.46 ml/min/kg) and a moderate volume of distribution at steady state (Vd(ss) = 1.70 +/- 0.23 l/kg), resulting in a terminal elimination half-life of 0.76 +/- 0.25 h. The corresponding area under the curve (AUC(0-infinity)) was 3.20 +/- 0.77 microg-h/ml. Scale-up of the in vitro microsomal intrinsic clearance data for PBN afforded a blood clearance (CLb) value of 22 ml/min/kg, which was in reasonable agreement with the observed in vivo CLb. Monkey liver microsomes catalyzed the NADPH-dependent monohydroxylation of PBN to the corresponding alpha-4-hydroxyphenyl-N-tert-butylnitrone (4-HOPBN) metabolite. The formation of 4-HOPBN and its corresponding O-glucuronide was also discernible upon qualitative analysis of pooled (0-24 h) monkey plasma and urine samples. Less than 5% of the administered dose was excreted as unchanged PBN in the urine, suggesting that P450-catalyzed metabolism constituted the major route of PBN clearance in the primate. In conclusion, the pharmacokinetic attributes and the clearance mechanism of PBN in the cynomolgus monkey is similar to that observed in the Sprague-Dawley rat.


Assuntos
Antioxidantes/farmacocinética , Sequestradores de Radicais Livres/farmacocinética , Fármacos Neuroprotetores/farmacocinética , Óxidos de Nitrogênio/farmacocinética , Animais , Antioxidantes/administração & dosagem , Antioxidantes/metabolismo , Biotransformação , Proteínas Sanguíneas/metabolismo , Óxidos N-Cíclicos , Sequestradores de Radicais Livres/administração & dosagem , Sequestradores de Radicais Livres/metabolismo , Injeções Intravenosas , Macaca fascicularis , Masculino , Taxa de Depuração Metabólica , Microssomos Hepáticos/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/metabolismo , Óxidos de Nitrogênio/administração & dosagem , Óxidos de Nitrogênio/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Drug Metab Dispos ; 31(2): 147-52, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12527695

RESUMO

The pharmacokinetics of the spin-trap alpha-phenyl-N-tert-butylnitrone (PBN) was investigated in male Sprague-Dawley rats. Plasma concentrations after i.v. administration (10 mg/kg) declined monoexponentially with a terminal half-life of 2.01 +/- 0.35 h and total plasma clearance (CL(p)) and volume of distribution at steady state (Vd(ss)) averaged 12.37 +/- 3.82 ml/min/kg and 1.74 +/- 0.5 l/kg, respectively. The observed CL(p) was in close agreement with the blood clearance (CL(b)) value (11.5 ml/min/kg) predicted from in vitro liver microsomal incubations suggesting that PBN CL(p) in rats is predominantly due to hepatic metabolism. Peak plasma concentration (C(max)) following p.o. (20 mg/kg) and s.c. (30 mg/kg) PBN administration was 7.35 +/- 1.92 and 3.56 +/- 0.66 microg/ml, whereas the area under the concentration-time curve from 0 to infinity was 23.89 +/- 5.84 and 15.96 +/- 3.10 microg-h/ml, respectively. The mean oral bioavailability of PBN was 85.63 +/- 20.93%. Biotransformation studies indicated the P450 2C11-catalyzed hydroxylation of PBN to M1. Potential sites of hydroxylation included the benzylic carbon resulting in phenyl-N-tert-butylhydroxamic acid or the phenyl ring that would afford alpha-hydroxyphenyl-N-tert-butylnitrone (HOPBN). The structure of M1 was established as alpha-4-Hydroxyphenyl-N-tert-butylnitrone (4-HOPBN) on the basis of: 1) obvious LC R(t) differences between M1 and the authentic hydroxamate standard, 2) P450 catalyzed hydroxylation of [(2)H]PBN that contained a deuterium instead of a hydrogen atom on its benzylic position and which afforded [(2)H]M1, and 3) comparison of the liquid chromatography-tandem mass spectrometry properties with a synthetic 4-HOPBN standard. We speculate that 4-HOPBN is an "active" PBN metabolite that provides an additive effect to the pharmacological action of PBN in vivo.


Assuntos
Sequestradores de Radicais Livres/farmacocinética , Microssomos Hepáticos/metabolismo , Óxidos de Nitrogênio/farmacocinética , Espécies Reativas de Oxigênio/farmacocinética , Animais , Óxidos N-Cíclicos , Sequestradores de Radicais Livres/sangue , Masculino , Óxidos de Nitrogênio/sangue , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
8.
Neurochem Res ; 27(6): 507-11, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12199156

RESUMO

The use of 3-nitropropionic acid (3-NP) and other mitochondria inhibitors to effectuate animal models of Huntington's disease has been well established. 3-NP administration has been shown to lead to pathology similar to that of HD, including massive loss of striatal neurons associated with oxidative stress. Oxidative stress induced by 3-NP also extends to the cortex, an area where little neuron loss occurs. No mechanism as of yet accounts for selective loss of striatal neurons while sparing cortical neurons. In the present study, a nitroxide stearate lipid bilayer-specific spin-label was utilized to probe 3-NP-induced fluidity changes in striatal and cortical synaptosomal membranes. In cortical synaptosomes, membrane fluidity increased in animals previously treated with 3-NP when compared to controls injected with saline vehicle, while in striatal synaptosomes, membrane fluidity decreased in animals treated with 3-NP when compared to controls. The results of the present study suggest that oxidatively-induced changes in membrane fluidity may be involved in mechanisms by which selective striatal neuronal loss occurs in this animal model of Huntington's disease.


Assuntos
Doença de Huntington/metabolismo , Bicamadas Lipídicas , Fluidez de Membrana/efeitos dos fármacos , Propionatos/farmacologia , Sinaptossomos/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Nitrocompostos , Estresse Oxidativo , Marcadores de Spin
9.
Neurochem Res ; 27(5): 417-21, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12064358

RESUMO

Presenilin-1 (PS-1) is a transmembrane protein that may be involved in the processing of amyloid precursor protein (APP). Mutations in PS-1 are the major cause of familial Alzheimer's disease (AD). AD brain is under significant oxidative stress, including protein oxidation. In the present study, protein oxidation was compared in synaptosomes from knock-in mice expressing mutant human PS-I (M146V mutation) and from wild-type mice expressing non-mutant human PS-1. Synaptosomal membrane protein conformational alterations associated with oxidative stress were measured using electron paramagnetic resonance (EPR) in conjunction with a protein-specific spin-label. Direct synaptosomal protein oxidation was assessed by a carbonyl detection assay. Synaptosomal proteins from PS-1 mutant mice displayed increased oxidative stress as measured by both techniques, compared with synaptosomal proteins from wild type mice. These data suggest that PS-1 mutations cause oxidative alterations in synaptosomal membrane protein structure and oxidative modification of synaptosomal proteins. Our findings suggest that familial AD may be associated with oxidative stress that may play a pivotal role in neuronal dysfunction and death.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo , Sinaptossomos/metabolismo , Doença de Alzheimer/genética , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Presenilina-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...