Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 383: 132456, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35182873

RESUMO

Isomaltooligosaccharides (IMOs) have been characterized as dietary fibers that resist digestion in the small intestine; however, previous studies suggested that various α-glycosidic linkages in IMOs were hydrolyzed by mammalian α-glucosidases. This study investigated the hydrolysis of IMOs by small intestinal α-glucosidases from rat and human recombinant sucrase-isomaltase complex compared to commonly used fungal amyloglucosidase (AMG) in vitro. Interestingly, mammalian α-glucosidases fully hydrolyzed various IMOs to glucose at a slow rate compared with linear maltooligosaccharides, whereas AMG could not fully hydrolyze IMOs because of its very low hydrolytic activity on α-1,6 linkages. This suggests that IMOs have been misjudged as prebiotic ingredients that bypass the small intestine due to the nature of the assay used. Instead, IMOs can be applied in the food industry as slowly digestible materials to regulate the glycemic response and energy delivery in the mammalian digestive system, rather than as dietary fibers.


Assuntos
Fibras na Dieta , alfa-Glucosidases , Animais , Glicemia , Carboidratos da Dieta , Glucose , Hidrólise , Mamíferos , Ratos
2.
Nutrients ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36615703

RESUMO

Large variability exists in ingredient selection and preparation of home prepared infant purees and there is a lack of data on nutritional quality in comparison to commercially prepared purees. This work had two aims. Study 1 compared the nutritional value of commercially prepared and home prepared infant purees. Food profiles from national food composition databases were used as a proxy for home prepared puree and served as the benchmark for the commercially prepared infant purees. Study 2 focused on a subset of produce that underwent molecular weight analysis to determine differences in carbohydrate profiles. Eighty-eight percent of the measurable micronutrients fell within or above the home prepared norm range with micronutrients falling below the range explained by differences in soil and growing conditions. Physicochemical characterization showed similar carbohydrate profiles with >90% of the carbohydrate fraction in the water extract constituted by low molecular weight sugars for purees produced with home preparation and commercial preparation. The estimated glycemic load (eGL) showed comparable potential impact on blood sugar levels with all purees having a low eGL (<10 glucose equivalent). In conclusion, these data suggest that both preparations provide similar micronutrient density and carbohydrate profiles.


Assuntos
Oligoelementos , Verduras , Humanos , Lactente , Verduras/química , Micronutrientes , Frutas , Glucose
3.
Foods ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828846

RESUMO

Daily use of wholegrain foods is generally recommended due to strong epidemiological evidence of reduced risk of chronic diseases. Cereal grains, especially the bran part, have a high content of dietary fiber (DF). Cereal DF is an umbrella concept of heterogeneous polysaccharides of variable chemical composition and molecular weight, which are combined in a complex network in cereal cell walls. Cereal DF and its distinct components influence food digestion throughout the gastrointestinal tract and influence nutrient absorption and other physiological reactions. After repeated consumption of especially whole grain cereal foods, these effects manifest in well-demonstrated health benefits. As cereal DF is always consumed in the form of processed cereal food, it is important to know the effects of processing on DF to understand, safeguard and maximize these health effects. Endogenous and microbial enzymes, heat and mechanical energy during germination, fermentation, baking and extrusion destructurize the food and DF matrix and affect the quantity and properties of grain DF components: arabinoxylans (AX), beta-glucans, fructans and resistant starch (RS). Depolymerization is the most common change, leading to solubilization and loss of viscosity of DF polymers, which influences postprandial responses to food. Extensive hydrolysis may also remove oligosaccharides and change the colonic fermentability of DF. On the other hand, aggregation may also occur, leading to an increased amount of insoluble DF and the formation of RS. To understand the structure-function relationship of DF and to develop foods with targeted physiological benefits, it is important to invest in thorough characterization of DF present in processed cereal foods. Such understanding also demands collaborative work between food and nutritional sciences.

4.
Food Funct ; 12(21): 10658-10666, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34590641

RESUMO

Insoluble dietary fibers are typically known to be poorly fermented in the large intestine. However, their value may be high as evidence shows that important butyrogenic bacteria preferentially utilize insoluble substrates to support their energy needs. The objective of this study was to increase fermentability of an insoluble bran fiber (pearl millet) while keeping it mostly insoluble to promote bacteria in the community that rely on fermentable insoluble dietary fibers. Following pretests with different processing methods, a combination of microwave and enzymatic treatments were applied to isolated pearl millet fiber to increase its accessibility of gut bacteria. In vitro human fecal fermentation was conducted and analyses were made for short chain fatty acids and microbiota changes. Combined microwave and enzymatic processing increased the amount of insoluble fiber fermented in vitro from 36 to 59% of total dietary fiber, with a minor increase in soluble fiber (8%). Microwave/enzymatic processing doubled butyrate production and almost tripled acetate production at 6 h fermentation compared to the native millet fiber. 16S rRNA gene sequencing showed that the processing promoted a significant increase in Firmicutes/Bacteroidetes ratio compared to the native fiber with relative abundance increases in Blautia and Copprococcus genera and a decrease in Bacteroidetes. Overall, these data show that processing techniques can be used to increase the value of insoluble fiber, presumably by increasing accessibility of the fiber to degrading bacteria, and to support Firmicutes that preferentially compete on insoluble fibers.


Assuntos
Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Manipulação de Alimentos , Pennisetum/química , Ácidos Graxos Voláteis , Fezes/microbiologia , Fermentação , Humanos , Micro-Ondas
5.
Int J Biol Macromol ; 154: 751-757, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32194128

RESUMO

The supernatant from rat intestinal acetone powder (RIAP) was used as a source of mammalian glucosidases to determine the digestion properties of glycemic-carbohydrates. We hypothesized that many glucosidases are still anchored to the precipitated-intestinal tissues with available enzymes, and developed a method using the RIAP suspension to optimize the in vitro carbohydrate digestion model. The glucose production from various types of glycemic ingredients by RIAP suspension showed that this carbohydrate-hydrolysis model using the entire spectrum of glucosidases can be applied in an in vitro assay to determine carbohydrate quality from glycemic food products at the mammalian level. This approach better mimics the mammalian situation compared to other assays to determine the glycemic-carbohydrate digestion properties that employ fungal/microbial glucosidases that have different hydrolytic activities compared to mammalian enzymes. The method can also be used to determine the inhibitory effects of α-glucosidase inhibitors to attenuate the post-prandial blood glucose level.


Assuntos
Dissacarídeos/metabolismo , Glucose/metabolismo , Glicosídeo Hidrolases/metabolismo , Intestinos/enzimologia , Animais , Hidrólise , Ratos
6.
Crit Rev Food Sci Nutr ; 60(1): 123-146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30525940

RESUMO

The glycemic carbohydrates we consume are currently viewed in an unfavorable light in both the consumer and medical research worlds. In significant part, these carbohydrates, mainly starch and sucrose, are looked upon negatively due to their rapid and abrupt glucose delivery to the body which causes a high glycemic response. However, dietary carbohydrates which are digested and release glucose in a slow manner are recognized as providing health benefits. Slow digestion of glycemic carbohydrates can be caused by several factors, including food matrix effect which impedes α-amylase access to substrate, or partial inhibition by plant secondary metabolites such as phenolic compounds. Differences in digestion rate of these carbohydrates may also be due to their specific structures (e.g. variations in degree of branching and/or glycosidic linkages present). In recent years, much has been learned about the synthesis and digestion kinetics of novel α-glucans (i.e. small oligosaccharides or larger polysaccharides based on glucose units linked in different positions by α-bonds). It is the synthesis and digestion of such structures that is the subject of this review.


Assuntos
Digestão , Trato Gastrointestinal/metabolismo , Glucanos/farmacologia , Glucose/metabolismo , Carboidratos da Dieta/metabolismo , Humanos , Amido
7.
Crit Rev Food Sci Nutr ; 59(7): 1058-1070, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29190114

RESUMO

Dietary guidelines indicate that complex carbohydrates should provide around half of the calories in a balanced diet, while sugars (i.e., simple carbohydrates) should be limited to no more than 5-10% of total energy intake. To achieve this public health goal a collective effort from different entities including governments, food & beverage industries and consumers is required. Some food companies have committed to continually reduce sugars in their products. Different solutions can be used to replace sugars in food products but it is important to ensure that these solutions are more healthful than the sugars they replace. The objectives of this paper are, (1) to identify carbohydrates and carbohydrates sources to promote and those to limit for dietary intake and food product development, based on current knowledge about the impact of carbohydrates on the development of dental caries, obesity and cardio-metabolic disorders (2) to evaluate the impact of food processing on the quality of carbohydrates and (3) to highlight the challenges of developing healthier products due to the limitations and gaps in food regulations, science & technology and consumer education.


Assuntos
Dieta Cariogênica , Carboidratos da Dieta , Manipulação de Alimentos , Saúde Pública , Doenças Cardiovasculares/etiologia , Cárie Dentária/etiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta Cariogênica/efeitos adversos , Dieta Cariogênica/classificação , Fibras na Dieta , Ingestão de Energia , Indústria Alimentícia , Humanos , Doenças Metabólicas/etiologia , Política Nutricional , Obesidade/etiologia
8.
Food Chem ; 167: 490-6, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25149016

RESUMO

Dietary fibre of quinoa and amaranth was analysed for its insoluble and soluble fibre content, composition, and structure. Total dietary fibre content was 10% for quinoa and 11% for amaranth. For both pseudocereals, 78% of its dietary fibre was insoluble. Insoluble fibre (IDF) from quinoa and amaranth was mainly composed of galacturonic acid, arabinose, galactose, xylose and glucose. Linkage analysis indicated that IDF was composed of homogalacturonans and rhamnogalacturonan-I with arabinan side-chains (∼55-60%), as well as highly branched xyloglucans (∼30%) and cellulose. For both pseudocereals, 22% of total dietary fibre was soluble; a higher proportion than that found in wheat and maize (∼15%). The soluble fibre (SDF) was composed of glucose, galacturonic acid and arabinose; for amaranth, xylose was also a major constituent. Xyloglucans made up ∼40-60% of the SDF and arabinose-rich pectic polysaccharides represented ∼34-55%.


Assuntos
Amaranthus/química , Chenopodium quinoa/química , Fibras na Dieta/análise , Glucanos/análise , Polissacarídeos/análise , Xilanos/análise , Ácidos Hexurônicos/análise , Pectinas/análise , Xilose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...