Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Front Oncol ; 14: 1326754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690164

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy characterized by disrupted blood cell production and function. Recent investigations have highlighted the potential of targeting glutamine metabolism as a promising therapeutic approach for AML. Asparaginases, enzymes that deplete circulating glutamine and asparagine, are approved for the treatment of acute lymphoblastic leukemia, but are also under investigation in AML, with promising results. We previously reported an elevation in plasma serine levels following treatment with Erwinia-derived asparaginase (also called crisantaspase). This led us to hypothesize that AML cells initiate the de novo serine biosynthesis pathway in response to crisantaspase treatment and that inhibiting this pathway in combination with crisantaspase would enhance AML cell death. Here we report that in AML cell lines, treatment with the clinically available crisantaspase, Rylaze, upregulates the serine biosynthesis enzymes phosphoglycerate dehydrogenase (PHGDH) and phosphoserine aminotransferase (PSAT1) through activation of the Amino Acid Response (AAR) pathway, a cellular stress response mechanism that regulates amino acid metabolism and protein synthesis under conditions of nutrient limitation. Inhibition of serine biosynthesis through CRISPR-Cas9-mediated knockout of PHGDH resulted in a ~250-fold reduction in the half-maximal inhibitory concentration (IC50) for Rylaze, indicating heightened sensitivity to crisantaspase therapy. Treatment of AML cells with a combination of Rylaze and a small molecule inhibitor of PHGDH (BI4916) revealed synergistic anti-proliferative effects in both cell lines and primary AML patient samples. Rylaze-BI4916 treatment in AML cell lines led to the inhibition of cap-dependent mRNA translation and protein synthesis, as well as a marked decrease in intracellular glutathione levels, a critical cellular antioxidant. Collectively, our results highlight the clinical potential of targeting serine biosynthesis in combination with crisantaspase as a novel therapeutic strategy for AML.

2.
Cancer Chemother Pharmacol ; 92(1): 39-50, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37249624

RESUMO

PURPOSE: It has become increasingly clear that new multiagent combination regimens are required to improve survival rates in acute myeloid leukemia (AML). We recently reported that ART631, a first-in-class 2-carbon-linked artemisinin-derived dimer (2C-ART), was not only efficacious as a component of a novel three-drug combination regimen to treat AML, but, like other synthetic artemisinin derivatives, demonstrated low clinical toxicity. However, we ultimately found ART631 to have suboptimal solubility and stability properties, thus limiting its potential for clinical development. METHODS: We assessed 22 additional 2C-ARTs with documented in vivo antimalarial activity for antileukemic efficacy and physicochemical properties. Our strategy involved culling out 2C-ARTs inferior to ART631 with respect to potency, stability, and solubility in vitro, and then validating in vivo pharmacokinetics, pharmacodynamics, and efficacy of one 2C-ART lead compound. RESULTS: Of the 22 2C-ARTs, ART714 was found to have the most optimal in vitro solubility, stability, and antileukemic efficacy, both alone and in combination with the BCL2 inhibitor venetoclax (VEN) and the kinase inhibitor sorafenib (SOR). ART714 was also highly effective in combination with VEN and the FMS-like tyrosine kinase 3 inhibitor gilteritinib (GILT) against MOLM14 AML xenografts. CONCLUSION: We identified ART714 as our best-in-class antileukemic 2C-ART, based on in vitro potency and pharmacologic properties. We established its in vivo pharmacokinetics and demonstrated its in vitro cooperativity with VEN and SOR and in vivo activities of combinations of ART714, VEN, and GILT. Additional research is indicated to define the optimal niche for the use of ART714 in treatment of AML.


Assuntos
Antimaláricos , Antineoplásicos , Artemisininas , Leucemia Mieloide Aguda , Humanos , Carbono/uso terapêutico , Antineoplásicos/farmacologia , Antimaláricos/farmacologia , Sorafenibe/uso terapêutico , Artemisininas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
3.
Cancer ; 129(4): 521-530, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36484171

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) are an effective therapeutic strategy, improving the survival of patients with lung cancer compared with conventional treatments. However, novel predictive biomarkers are needed to stratify which patients derive clinical benefit because the currently used and highly heterogenic histological PD-L1 has shown low accuracy. Liquid biopsy is the analysis of biomarkers in body fluids and represents a minimally invasive tool that can be used to monitor tumor evolution and treatment effects, potentially reducing biases associated with tumor heterogeneity associated with tissue biopsies. In this context, cytokines, such as transforming growth factor-ß (TGF-ß), can be found free in circulation in the blood and packaged into extracellular vesicles (EVs), which have a specific delivery tropism and can affect in tumor/immune system interaction. TGF-ß is an immunosuppressive cytokine that plays a crucial role in tumor immune escape, treatment resistance, and metastasis. Thus, we aimed to evaluate the predictive value of circulating and EV TGF-ß in patients with non-small-cell lung cancer receiving ICIs. METHODS: Plasma samples were collected in 33 patients with advanced non-small-cell lung cancer before and during treatment with ICIs. EV were isolated from plasma by serial ultracentrifugation methods and circulating and EV TGF-ß expression levels were evaluated by enzyme-linked immunosorbent assay. RESULTS: Baseline high expression of TGF-ß in EVs was associated with nonresponse to ICIs as well as shorter progression-free survival and overall survival, outperforming circulating TGF-ß levels and tissue PD-L1 as a predictive biomarker. CONCLUSION: If validated, EV TGF-ß could be used to improve patient stratification, increasing the effectiveness of treatment with ICIs and potentially informing combinatory treatments with TGF-ß blockade. PLAIN LANGUAGE SUMMARY: Treatment with immune-checkpoint inhibitors (ICIs) has improved the survival of some patients with lung cancer. However, the majority of patients do not benefit from this treatment, making it essential to develop more reliable biomarkers to identify patients most likely to benefit. In this pilot study, the expression of transforming growth factor-ß (TGF-ß) in blood circulation and in extracellular vesicles was analyzed. The levels of extracellular vesicle TGF-ß before treatment were able to determine which patients would benefit from treatment with ICIs and have a longer survival with higher accuracy than circulating TGF-ß and tissue PD-L1, which is the currently used biomarker in clinical practice.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1 , Fator de Crescimento Transformador beta , Projetos Piloto , Imunoterapia/métodos , Biomarcadores Tumorais , Vesículas Extracelulares/patologia , Fatores de Crescimento Transformadores/uso terapêutico
4.
Front Oncol ; 12: 1035537, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578934

RESUMO

The impact of asparaginases on plasma asparagine and glutamine is well established. However, the effect of asparaginases, particularly those derived from Erwinia chrysanthemi (also called crisantaspase), on circulating levels of other amino acids is unknown. We examined comprehensive plasma amino acid panel measurements in healthy immunodeficient/immunocompetent mice as well as in preclinical mouse models of acute myeloid leukemia (AML) and pancreatic ductal adenocarcinoma (PDAC) using long-acting crisantaspase, and in an AML clinical study (NCT02283190) using short-acting crisantaspase. In addition to the expected decrease of plasma glutamine and asparagine, we observed a significant increase in plasma serine and glycine post-crisantaspase. In PDAC tumors, crisantaspase treatment significantly increased expression of serine biosynthesis enzymes. We then systematically reviewed clinical studies using asparaginase products to determine the extent of plasma amino acid reporting and found that only plasma levels of glutamine/glutamate and asparagine/aspartate were reported, without measuring other amino acid changes post-asparaginase. To the best of our knowledge, we are the first to report comprehensive plasma amino acid changes in mice and humans treated with asparaginase. As dysregulated serine metabolism has been implicated in tumor development, our findings offer insights into how leukemia/cancer cells may potentially overcome glutamine/asparagine restriction, which can be used to design future synergistic therapeutic approaches.

5.
Biomedicines ; 10(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428466

RESUMO

Micronuclei (MN) are fragments of damaged nucleic acids which budded from a cell's nuclei as a repair mechanism for chromosomal instabilities, which within circulating white blood cells (cWBCs) signifies increased cancer risk, and in tumor cells indicates aggressive subtypes. MN form overtime and with therapy induction, which requires sequential monitoring of rarer cell subpopulations. We evaluated the peripheral blood (7.5 mL) for MN in Circulating Stromal Cells (CStCs) in a prospective pilot study of advanced colorectal cancer patients (n = 25), identifying MN by DAPI+ structures (<3 µm) within the cellular cytoplasm. MN+ was compared to genotoxic induction, progression free survival (PFS) or overall survival (OS) hazard ratios (HR) over three years. MN were identified in 44% (n = 11/25) of CStCs, but were not associated with genotoxic therapies (p = 0.110) nor stage (p = 0.137). However, presence of MN in CStCs was independently prognostic for PFS (HR = 17.2, 95% CI 3.6−80.9, p = 0.001) and OS (HR = 70.3, 95% CI 6.6−752.8, p = 0.002), indicating a non-interventional mechanism in their formation. Additionally, MN formation did not appear associated with chemotherapy induction, but was correlated with tumor response. MN formation in colorectal cancer is an underlying biological mechanism that appears independent of chemotherapeutic genotoxins, changes during treatment, and predicts for poor clinical outcomes.

6.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806301

RESUMO

The usage of beta blockers in breast cancer (BC) patients is implicated in the reduction in distant metastases, cancer recurrence, and cancer mortality. Studies suggest that the adrenergic pathway is directly involved in sympathetic-driven hematopoietic activation of pro-tumor microenvironmental proliferation and tumor cell trafficking into the circulation. Cancer-associated macrophage-like cells (CAMLs) are pro-tumor polynucleated monocytic cells of hematopoietic origin emanating from tumors which may aid in circulating tumor cell (CTC) dissemination into the circulation. We examined the linkage between Beta-2 adrenergic receptor (B2AR) signaling in CAMLs and CTCs by establishing expression profiles in a model BC cell line (MDA-MB-231). We compared the model to CAMLs and CTCs found in patents. Although internalization events were observed in patients, differences were found in the expression of B2AR between the tumor cell lines and the CAMLs found in patients. High B2AR expression on patients' CAMLs was correlated with significantly more CAMLs in the circulation (p = 0.0093), but CTCs had no numerical relationship (p = 0.1565). High B2AR CAML expression was also significantly associated with a larger size of CAMLs (p = 0.0073), as well as being significantly associated with shorter progression-free survival (p = 0.0097) and overall survival (p = 0.0265). These data suggest that B2AR expression on CAMLs is closely related to the activation, intravasation, and growth of CAMLs in the circulation.


Assuntos
Neoplasias da Mama , Macrófagos , Células Neoplásicas Circulantes , Receptores Adrenérgicos beta 2 , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Receptores Adrenérgicos beta 2/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(28): e2201423119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867758

RESUMO

Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.


Assuntos
Antígenos de Bactérias , Antineoplásicos , Toxinas Bacterianas , Neoplasias Ovarianas , Pró-Fármacos , Serina Proteases , Antígenos de Bactérias/farmacologia , Antígenos de Bactérias/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/uso terapêutico , Linhagem Celular Tumoral , Precursores Enzimáticos/metabolismo , Feminino , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Serina Proteases/metabolismo , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Exp Clin Cancer Res ; 41(1): 186, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35650597

RESUMO

BACKGROUND: Immune-checkpoint inhibitors (ICIs) changed the therapeutic landscape of patients with lung cancer. However, only a subset of them derived clinical benefit and evidenced the need to identify reliable predictive biomarkers. Liquid biopsy is the non-invasive and repeatable analysis of biological material in body fluids and a promising tool for cancer biomarkers discovery. In particular, there is growing evidence that extracellular vesicles (EVs) play an important role in tumor progression and in tumor-immune interactions. Thus, we evaluated whether extracellular vesicle PD-L1 expression could be used as a biomarker for prediction of durable treatment response and survival in patients with non-small cell lung cancer (NSCLC) undergoing treatment with ICIs. METHODS: Dynamic changes in EV PD-L1 were analyzed in plasma samples collected before and at 9 ± 1 weeks during treatment in a retrospective and a prospective independent cohorts of 33 and 39 patients, respectively. RESULTS: As a result, an increase in EV PD-L1 was observed in non-responders in comparison to responders and was an independent biomarker for shorter progression-free survival and overall survival. To the contrary, tissue PD-L1 expression, the commonly used biomarker, was not predictive neither for durable response nor survival. CONCLUSION: These findings indicate that EV PD-L1 dynamics could be used to stratify patients with advanced NSCLC who would experience durable benefit from ICIs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Vesículas Extracelulares/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos
9.
Oral Oncol ; 131: 105939, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35667295

RESUMO

OBJECTIVES: To identify the most effective PI3K and EGFR inhibitors in HPV-positive head and neck squamous cell carcinoma (HNSCC) and investigate the efficacy of a combination of an ErbB family kinase inhibitor and a PI3K inhibitor to inhibit cell proliferation of HPV-positive HNSCC. MATERIALS AND METHOD: HPV-positive HNSCC cell lines were treated with the FDA approved ErbB kinase inhibitor, Afatinib or FDA-approved PI3K inhibitor, Copanlisib, alone or in combination, and phosphorylation and total protein levels of cells were assessed by Western blot analysis.Cell proliferation and apoptosis were examined by MTS assay, flow cytometry, and Western blots, respectively. RESULTS: Copanlisib more effectively inhibited cell proliferation in comparison to other PI3K inhibitors tested. HPV-positive HNSCC cells differentially responded to cisplatin, Afatinib, or Copanlisib. The combination of Afatinib and Copanlisib more effectively suppressed cell proliferation and induced apoptosis compared to either treatment alone. Mechanistically, the combination of Afatinib and Copanlisib completely blocked phosphorylation of EGFR, HER2, HER3, and Akt as well as significantly decreased the HPV E7 expression compared to either treatment alone. CONCLUSION: Afatinib and Copanlisib more effectively suppress cell proliferation and survival of HPV-positive HNSCC in comparison to either treatment alone.


Assuntos
Antineoplásicos , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Afatinib/farmacologia , Afatinib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
10.
Cancer Chemother Pharmacol ; 89(4): 469-478, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212780

RESUMO

PURPOSE: We investigated the role of Wee1 kinase in cisplatin-resistant head and neck squamous cell carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines and determined the efficacy of either Wee1 inhibitor, AZD1775 alone, or in combination with cisplatin, on cisplatin-resistant HNSCC inhibition. METHODS: Phosphorylation and total protein levels of cells were assessed by Western blot analysis. Cell viability and apoptosis were examined by MTS assay and flow cytometry, respectively. RESULTS: Wee1 kinase protein expression levels in five cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin-sensitive partners. Importantly, Wee1 knockdown inhibited cell proliferation and re-sensitized cells to cisplatin treatment. Interestingly, previous studies have also shown that Wee1 inhibitor AZD1775 synergizes with cisplatin to suppress cell proliferation of cisplatin-sensitive HNSCC. We found that AZD1775 inhibited both cisplatin-sensitive and resistant HNSCC with similar IC50 values, which suggested that AZD1775 could overcome cisplatin resistance in cisplatin-resistant HNSCC. Mechanistically, AZD1775 and cisplatin cooperatively induced DNA damage and apoptosis. CONCLUSION: Wee1 inhibitor, AZD1775, and cisplatin coordinately suppressed proliferation and survival of HNSCC.


Assuntos
Cisplatino , Neoplasias de Cabeça e Pescoço , Apoptose , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Proteínas Tirosina Quinases , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
11.
Exp Hematol ; 108: 55-63, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35104581

RESUMO

The clinical outcomes of patients with acute myeloid leukemia (AML) treated with available therapy remain unsatisfactory. We recently reported that the BCL-2 inhibitor venetoclax synergizes with pegcrisantaspase (Ven-PegC) and exhibits remarkable in vivo efficacy in a preclinical model of AML with complex karyotype. The Ven-PegC combination blocks synthesis of proteins in AML cells by inhibiting cap-dependent translation of mRNA. To further explore the impact of Ven-PegC on protein translation, we used polysome profiling and high-throughput RNA sequencing to characterize Ven-PegC-dependent changes to the translatome. Here we report that the translation of five mRNAs, including two microRNAs, one rRNA, and two mitochondrial genes, was altered after exposure to all three treatments (Ven, PegC, and Ven-PegC). We focused our translatome validation studies on six additional genes related to translational efficiency that were modified by Ven-PegC. Notably, Ven-PegC treatment increased the RNA translation and protein levels of Tribbles homologue 3 (TRIB3), eukaryotic translation initiation factor 3 subunit C (eIF3C), doublesex and mab-3-related transcription factor 1 (DMRT1), and salt-inducible kinase 1 (SIK1). We validated the observed changes in gene/protein expression in vitro and confirmed our cell line-based studies in the bone marrow of an AML patient-derived xenograft model after Ven-PegC treatment. These results support examining alterations in the translatome post chemotherapy to offer insight into the drug's mechanism of action and to inform future therapeutic decisions.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico
12.
Clin Cancer Res ; 28(7): 1313-1322, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091444

RESUMO

PURPOSE: Patients with acute myeloid leukemia (AML) unfit for, or resistant to, intensive chemotherapy are often treated with DNA methyltransferase inhibitors (DNMTi). Novel combinations may increase efficacy. In addition to demethylating CpG island gene promoter regions, DNMTis enhance PARP1 recruitment and tight binding to chromatin, preventing PARP-mediated DNA repair, downregulating homologous recombination (HR) DNA repair, and sensitizing cells to PARP inhibitor (PARPi). We previously demonstrated DNMTi and PARPi combination efficacy in AML in vitro and in vivo. Here, we report a phase I clinical trial combining the DNMTi decitabine and the PARPi talazoparib in relapsed/refractory AML. PATIENTS AND METHODS: Decitabine and talazoparib doses were escalated using a 3 + 3 design. Pharmacodynamic studies were performed on cycle 1 days 1 (pretreatment), 5 and 8 blood blasts. RESULTS: Doses were escalated in seven cohorts [25 patients, including 22 previously treated with DNMTi(s)] to a recommended phase II dose combination of decitabine 20 mg/m2 intravenously daily for 5 or 10 days and talazoparib 1 mg orally daily for 28 days, in 28-day cycles. Grade 3-5 events included fever in 19 patients and lung infections in 15, attributed to AML. Responses included complete remission with incomplete count recovery in two patients (8%) and hematologic improvement in three. Pharmacodynamic studies showed the expected DNA demethylation, increased PARP trapping in chromatin, increased γH2AX foci, and decreased HR activity in responders. γH2AX foci increased significantly with increasing talazoparib doses combined with 20 mg/m2 decitabine. CONCLUSIONS: Decitabine/talazoparib combination was well tolerated. Expected pharmacodynamic effects occurred, especially in responders.


Assuntos
Decitabina , Leucemia Mieloide Aguda , Inibidores de Poli(ADP-Ribose) Polimerases , Protocolos de Quimioterapia Combinada Antineoplásica , Azacitidina , DNA , Decitabina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Metiltransferases , Ftalazinas , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
13.
Anticancer Agents Med Chem ; 22(2): 239-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34080968

RESUMO

BACKGROUND: The clinical outcomes of patients with Acute Myeloid Leukemia (AML) remain unsatisfactory. Therefore the development of more efficacious and better-tolerated therapy for AML is critical. We have previously reported anti-leukemic activity of synthetic halohydroxyl dimeric naphthoquinones (BiQ) and aziridinyl BiQ. OBJECTIVE: This study aimed to improve the potency and bioavailability of BiQ compounds and investigate antileukemic activity of the lead compound in vitro and a human AML xenograft mouse model. METHODS: We designed, synthesized, and performed structure-activity relationships of several rationally designed BiQ analogues with amino alcohol functional groups on the naphthoquinone core rings. The compounds were screened for anti-leukemic activity and the mechanism as well as in vivo tolerability and efficacy of our lead compound was investigated. RESULTS: We report that a dimeric naphthoquinone (designated BaltBiQ) demonstrated potent nanomolar anti-leukemic activity in AML cell lines. BaltBiQ treatment resulted in the generation of reactive oxygen species, induction of DNA damage, and inhibition of indoleamine dioxygenase 1. Although BaltBiQ was tolerated well in vivo, it did not significantly improve survival as a single agent, but in combination with the specific Bcl-2 inhibitor, Venetoclax, tumor growth was significantly inhibited compared to untreated mice. CONCLUSION: We synthesized a novel amino alcohol dimeric naphthoquinone, investigated its main mechanisms of action, reported its in vitro anti-AML cytotoxic activity, and showed its in vivo promising activity combined with a clinically available Bcl-2 inhibitor in a patient-derived xenograft model of AML.


Assuntos
Amino Álcoois/farmacologia , Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Naftoquinonas/farmacologia , Amino Álcoois/química , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Naftoquinonas/química , Relação Estrutura-Atividade
14.
Commun Biol ; 4(1): 1389, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916602

RESUMO

In light of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants potentially undermining humoral immunity, it is important to understand the fine specificity of the antiviral antibodies. We screened 20 COVID-19 patients for antibodies against 9 different SARS-CoV-2 proteins observing responses against the spike (S) proteins, the receptor-binding domain (RBD), and the nucleocapsid (N) protein which were of the IgG1 and IgG3 subtypes. Importantly, mutations which typically occur in the B.1.351 "South African" variant, significantly reduced the binding of anti-RBD antibodies. Nine of 20 patients were critically ill and were considered high-risk (HR). These patients showed significantly higher levels of transforming growth factor beta (TGF-ß) and myeloid-derived suppressor cells (MDSC), and lower levels of CD4+ T cells expressing LAG-3 compared to standard-risk (SR) patients. HR patients evidenced significantly higher anti-S1/RBD IgG antibody levels and an increased neutralizing activity. Importantly, a large proportion of S protein-specific antibodies were glycosylation-dependent and we identified a number of immunodominant linear epitopes within the S1 and N proteins. Findings derived from this study will not only help us to identify the most relevant component of the anti-SARS-CoV-2 humoral immune response but will also enable us to design more meaningful immunomonitoring methods for anti-COVID-19 vaccines.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Proteínas Virais/imunologia , Imunidade Adaptativa/imunologia , Adulto , Idoso , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Feminino , Humanos , Imunidade Humoral/imunologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
15.
Cancers (Basel) ; 13(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34439340

RESUMO

Treatment options are rather limited for gastrointestinal cancer patients whose disease has disseminated into the intra-abdominal cavity. Here, we designed pre-clinical studies to evaluate the potential application of chemopotentiation by Low Dose Fractionated Radiation Therapy (LDFRT) for disseminated gastric cancer and evaluate the role of a likely biomarker, Dual Oxidase 2 (DUOX2). Nude mice were injected orthotopically with human gastric cancer cells expressing endogenous or reduced levels of DUOX2 and randomly assigned to four treatment groups: 1; vehicle alone, 2; modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF) for three consecutive days, 3; Low Dose- Whole Abdomen Radiation Therapy (LD-WART) (5 fractions of 0.15 Gy in three days), 4; mDCF and LD-WART. The combined regimen increased the odds of preventing cancer dissemination (mDCF + LD-WART OR = 4.16; 80% CI = 1.0, 17.29) in the DUOX2 positive tumors, while tumors expressing lower DUOX2 levels were more responsive to mDCF alone with no added benefit from LD-WART. The molecular mechanisms underlying DUOX2 effects in response to the combined regimen include NF-κB upregulation. These data are particularly important since our study indicates that about 33% of human stomach adenocarcinoma do not express DUOX2. DUOX2 thus seems a likely biomarker for potential clinical application of chemopotentiation by LD-WART.

16.
Front Oncol ; 11: 704722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249765

RESUMO

PURPOSE: Define incidence and risk factors of osteonecrosis of the jaw (ONJ) and explore oral microbial signatures and host immune response as reflected by cytokine changes in saliva and serum in multiple myeloma (MM) patients on bisphosphate (BP) therapy. PATIENTS AND METHODS: A single center observational prospective study of MM patients (n = 110) on >2 years of BP, none had ONJ at enrollment. Patients were followed every 3 months for 18 months with clinical/dental examination and serial measurements of inflammatory cytokines, bone turnover markers, and angiogenic growth factors. Oral microbiota was characterized by sequencing of 16S rRNA gene from saliva. RESULTS: Over the study period 14 patients (13%) developed BRONJ, at a median of 5.7 years (95% CI: 1.9-12.0) from MM diagnosis. Chronic periodontal disease was the main clinically observed risk factor. Oral microbial profiling revealed lower bacterial richness/diversity in BRONJ. Streptococcus intermedius, S. mutans, and S. perioris were abundant in controls; S. sonstellatus and S anginosus were prevalent in BRONJ. In the saliva, at baseline patients who developed BRONJ had higher levels of MIP-1ß; TNF-α and IL-6 compared to those without BRONJ, cytokine profile consistent with M-1 macrophage activation. In the serum, patients with BRONJ have significantly lower levels of TGF beta and VEGF over the study period. CONCLUSION: Periodontal disease associated with low microbial diversity and predominance of invasive species with a proinflammatory cytokine profile leading to tissue damage and alteration of immunity seems to be the main culprit in pathogenesis of BRONJ.

17.
Biochem Biophys Res Commun ; 562: 69-75, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34038755

RESUMO

XBP1 is a basic leucine zipper (bZIP) transcription factor and a key mediator of the endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR). XBP1-mediated transcription facilitates cell adaptation to ER stress and also promotes tumor progression, while suppressing anti-tumor immunity. Here we report a novel XBP1 variant, namely XBP1 variant 1 (XBP1v1, Xv1 for short), that is specifically required for survival of cancer cells. Xv1 contains a cryptic first exon that is conserved only in humans and great apes. Comparing to XBP1, Xv1 encodes a protein with a different N-terminal sequence containing 25 amino acids. Analysis of RNAseq database reveals that Xv1 is broadly expressed across cancer types but almost none in normal tissues. Elevated Xv1 expression is associated with poor survival of patients with several types of cancer. Knockdown of Xv1 induces death of multiple cancer cell lines but has little effect on non-cancerous cells in vitro. Moreover, knockdown of Xv1 also inhibits growth of a xenograft breast tumor in mice. Together, our results indicate that Xv1 is essential for survival of cancer cells.


Assuntos
Variação Genética , Neoplasias/genética , Neoplasias/patologia , Proteína 1 de Ligação a X-Box/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Nus , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Ther ; 20(4): 676-690, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33568357

RESUMO

Fms-like tyrosine-like kinase 3 internal tandem duplication (FLT3-ITD) is present in acute myeloid leukemia (AML) in 30% of patients and is associated with short disease-free survival. FLT3 inhibitor efficacy is limited and transient but may be enhanced by multitargeting of FLT3-ITD signaling pathways. FLT3-ITD drives both STAT5-dependent transcription of oncogenic Pim-1 kinase and inactivation of the tumor-suppressor protein phosphatase 2A (PP2A), and FLT3-ITD, Pim-1, and PP2A all regulate the c-Myc oncogene. We studied mechanisms of action of cotreatment of FLT3-ITD-expressing cells with FLT3 inhibitors and PP2A-activating drugs (PADs), which are in development. PADs, including FTY720 and DT-061, enhanced FLT3 inhibitor growth suppression and apoptosis induction in FLT3-ITD-expressing cell lines and primary AML cells in vitro and MV4-11 growth suppression in vivo PAD and FLT3 inhibitor cotreatment independently downregulated c-Myc and Pim-1 protein through enhanced proteasomal degradation. c-Myc and Pim-1 downregulation was preceded by AKT inactivation, did not occur in cells expressing myristoylated (constitutively active) AKT1, and could be induced by AKT inhibition. AKT inactivation resulted in activation of GSK-3ß, and GSK-3ß inhibition blocked downregulation of both c-Myc and Pim-1 by PAD and FLT3 inhibitor cotreatment. GSK-3ß activation increased c-Myc proteasomal degradation through c-Myc phosphorylation on T58; infection with c-Myc with T58A substitution, preventing phosphorylation, blocked downregulation of c-Myc by PAD and FLT3 inhibitor cotreatment. GSK-3ß also phosphorylated Pim-1L/Pim-1S on S95/S4. Thus, PADs enhance efficacy of FLT3 inhibitors in FLT3-ITD-expressing cells through a novel mechanism involving AKT inhibition-dependent GSK-3ß-mediated increased c-Myc and Pim-1 proteasomal degradation.


Assuntos
Genes myc/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Animais , Proliferação de Células , Humanos , Camundongos , Camundongos Endogâmicos NOD , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Transfecção
19.
Blood Adv ; 5(3): 711-724, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33560385

RESUMO

Artemisinins are active against human leukemia cell lines and have low clinical toxicity in worldwide use as antimalarials. Because multiagent combination regimens are necessary to cure fully evolved leukemias, we sought to leverage our previous finding that artemisinin analogs synergize with kinase inhibitors, including sorafenib (SOR), by identifying additional synergistic antileukemic drugs with low toxicity. Screening of a targeted antineoplastic drug library revealed that B-cell lymphoma 2 (BCL2) inhibitors synergize with artemisinins, and validation assays confirmed that the selective BCL2 inhibitor, venetoclax (VEN), synergized with artemisinin analogs to inhibit growth and induce apoptotic cell death of multiple acute leukemia cell lines in vitro. An oral 3-drug "SAV" regimen (SOR plus the potent artemisinin-derived trioxane diphenylphosphate 838 dimeric analog [ART838] plus VEN) killed leukemia cell lines and primary cells in vitro. Leukemia cells cultured in ART838 had decreased induced myeloid leukemia cell differentiation protein (MCL1) levels and increased levels of DNA damage-inducible transcript 3 (DDIT3; GADD153) messenger RNA and its encoded CCATT/enhancer-binding protein homologous protein (CHOP), a key component of the integrated stress response. Thus, synergy of the SAV combination may involve combined targeting of MCL1 and BCL2 via discrete, tolerable mechanisms, and cellular levels of MCL1 and DDIT3/CHOP may serve as biomarkers for action of artemisinins and SAV. Finally, SAV treatment was tolerable and resulted in deep responses with extended survival in 2 acute myeloid leukemia (AML) cell line xenograft models, both harboring a mixed lineage leukemia gene rearrangement and an FMS-like receptor tyrosine kinase-3 internal tandem duplication, and inhibited growth in 2 AML primagraft models.


Assuntos
Artemisininas , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Sorafenibe , Sulfonamidas
20.
J Cancer Educ ; 36(3): 621-629, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907826

RESUMO

The demand for biomedical researchers and health science professionals has increased over the past several decades. This need is particularly acute in the fields of cancer research and oncology in which technological advances have fueled an unprecedented pace of laboratory discoveries and their applications in novel diagnostic and therapeutic strategies. Internships that expose undergraduate students to cancer research and patient care serve an important function in meeting this need by educating trainees about careers in this field and inspiring them to pursue these professional paths. Moreover, the translational impetus of cancer research incorporates research, regulatory, business, and clinical components, providing students with even more cancer-focused career options. With the goal of providing hands-on experiences in cancer research and oncology to undergraduate students who comprise the next generation of cancer physician-scientists and will fill this demand in our professional workforce, the Nathan Schnaper Intern Program in Translational Cancer Research (NSIP) has grown from a small laboratory-based local summer internship to a competitive national program. In this study, we evaluate three new modules of the NSIP research, education, and clinical components that have been implemented in the first 2 years of National Cancer Institute Cancer Research Education Grants Program funding. The impact of these modules on intern satisfaction, learning, and near-term career trajectory is assessed to identify the most effective approaches and key measures of program outcomes.


Assuntos
Internato e Residência , Neoplasias , Médicos , Escolha da Profissão , Humanos , Neoplasias/terapia , Pesquisadores , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...