Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248301

RESUMO

Reaching population immunity against COVID-19 is proving difficult even in countries with high vaccination levels. We demonstrate that this in part is due to heterogeneity and stochasticity resulting from community-specific human-human interaction and infection networks. We address this challenge by community-specific simulation of adaptive strategies. Analyzing the predicted effect of vaccination into an ongoing COVID-19 outbreak, we find that adaptive combinations of targeted vaccination and non-pharmaceutical interventions (NPIs) are required to reach population immunity. Importantly, the threshold for population immunity is not a unique number but strategy and community dependent. Furthermore, the dynamics of COVID-19 outbreaks is highly community-specific: in some communities vaccinating highly interactive people diminishes the risk for an infection wave, while vaccinating the elderly reduces fatalities when vaccinations are low due to supply or hesitancy. Similarly, while risk groups should be vaccinated first to minimize fatalities, optimality branching is observed with increasing population immunity. Bimodality emerges as the infection network gains complexity over time, which entails that NPIs generally need to be longer and stricter. Thus, we analyze and quantify the requirement for NPIs dependent on the chosen vaccination strategy. We validate our simulation platform on real-world epidemiological data and demonstrate that it can predict pathways to population immunity for diverse communities world-wide challenged by limited vaccination.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20089235

RESUMO

Infectious disease outbreaks challenge societies by creating dynamic stochastic infection networks between human individuals in geospatial and demographical contexts. Minimizing human and socioeconomic costs of SARS-CoV-2 and future global pandemics requires data-driven and context-specific integrative modeling of detection-tracing, healthcare, and non-pharmaceutical interventions for decision-processes and reopening strategies. Traditional population-based epidemiological models cannot simulate temporal infection dynamics for individual human behavior in specific geolocations. We present an integrated geolocalized and demographically referenced spatio-temporal stochastic network- and agent-based model of COVID-19 dynamics for human encounters in real-world communities. Simulating intervention scenarios, we quantify effects of protection and identify the importance of early introduction of test-trace measures. Critically, we observe bimodality in SARS-CoV-2 infection dynamics so that the outcome of reopening can flip between good and poor outcomes stochastically. Furthermore, intervention effectiveness depends on strict execution and temporal control i.e. leaks can prevent successful outcomes. Schools are in many scenarios hubs for transmission, reopening scenarios are impacted by infection chain stochasticity and subsequent outbreaks do not always occur. This generalizable geospatial and individualized methodology is unique in precision and specificity compared to prior COVID-19 models [6, 16, 17, 19] and is applicable to scientifically guided decision processes for communities worldwide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...