Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(34): 5003-5017, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37407405

RESUMO

As the COVID-19 pandemic transitions into endemicity, seasonal boosters are a plausible reality across the globe. We hypothesize that intranasal vaccines can provide better protection against asymptomatic infections and more transmissible variants of SARS-CoV-2. To formulate a protective intranasal vaccine, we utilized a VLP-based platform. Hepatitis B surface antigen-based virus like particles (VLP) linked with receptor binding domain (RBD) antigen were paired with the TLR4-based agonist adjuvant, BECC 470. K18-hACE2 mice were primed and boosted at four-week intervals with either VLP-RBD-BECC or mRNA-1273. Both VLP-RBD-BECC and mRNA-1273 vaccination resulted in production of RBD-specific IgA antibodies in serum. RBD-specific IgA was also detected in the nasal wash and lung supernatants and were highest in VLP-RBD-BECC vaccinated mice. Interestingly, VLP-RBD-BECC vaccinated mice showed slightly lower levels of pre-challenge IgG responses, decreased RBD-ACE2 binding inhibition, and lower neutralizing activity in vitro than mRNA-1273 vaccinated mice. Both VLP-RBD-BECC and mRNA-1273 vaccinated mice were protected against challenge with a lethal dose of Delta variant SARS-CoV-2. Both vaccines limited viral replication and viral RNA burden in the lungs of mice. CXCL10 is a biomarker of severe SARS-CoV-2 infection and we observed both vaccines limited expression of serum and lung CXCL10. Strikingly, VLP-RBD-BECC when administered intranasally, limited lung inflammation at early timepoints that mRNA-1273 vaccination did not. VLP-RBD-BECC immunization elicited antibodies that do recognize SARS-CoV-2 Omicron variant. However, VLP-RBD-BECC immunized mice were protected from Omicron challenge with low viral burden. Conversely, mRNA-1273 immunized mice had low to no detectable virus in the lungs at day 2. Together, these data suggest that VLP-based vaccines paired with BECC adjuvant can be used to induce protective mucosal and systemic responses against SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Vacina de mRNA-1273 contra 2019-nCoV , Pandemias , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Imunoglobulina A , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
2.
NPJ Vaccines ; 8(1): 68, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179389

RESUMO

Current COVID-19 vaccines prevent severe disease, but do not induce mucosal immunity or prevent infection with SARS-CoV-2, especially with recent variants. Furthermore, serum antibody responses wane soon after immunization. We assessed the immunogenicity and protective efficacy of an experimental COVID-19 vaccine based on the SARS-CoV-2 Spike trimer formulated with a novel adjuvant LP-GMP, comprising TLR2 and STING agonists. We demonstrated that immunization of mice twice by the intranasal (i.n.) route or by heterologous intramuscular (i.m.) prime and i.n. boost with the Spike-LP-GMP vaccine generated potent Spike-specific IgG, IgA and tissue-resident memory (TRM) T cells in the lungs and nasal mucosa that persisted for at least 3 months. Furthermore, Spike-LP-GMP vaccine delivered by i.n./i.n., i.m./i.n., or i.m./i.m. routes protected human ACE-2 transgenic mice against respiratory infection and COVID-19-like disease following lethal challenge with ancestral or Delta strains of SARS-CoV-2. Our findings underscore the potential for nasal vaccines in preventing infection with SARS-CoV-2 and other respiratory pathogen.

3.
Vaccine ; 41(5): 1108-1118, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36610932

RESUMO

There is a continued need for sarbecovirus vaccines that can be manufactured and distributed in low- and middle-income countries (LMICs). Subunit protein vaccines are manufactured at large scales at low costs, have less stringent temperature requirements for distribution in LMICs, and several candidates have shown protection against SARS-CoV-2. We previously reported an engineered variant of the SARS-CoV-2 Spike protein receptor binding domain antigen (RBD-L452K-F490W; RBD-J) with enhanced manufacturability and immunogenicity compared to the ancestral RBD. Here, we report a second-generation engineered RBD antigen (RBD-J6) with two additional mutations to a hydrophobic cryptic epitope in the RBD core, S383D and L518D, that further improved expression titers and biophysical stability. RBD-J6 retained binding affinity to human convalescent sera and to all tested neutralizing antibodies except antibodies that target the class IV epitope on the RBD core. K18-hACE2 transgenic mice immunized with three doses of a Beta variant of RBD-J6 displayed on a virus-like particle (VLP) generated neutralizing antibodies (nAb) to nine SARS-CoV-2 variants of concern at similar levels as two doses of Comirnaty. The vaccinated mice were also protected from challenge with Alpha or Beta SARS-CoV-2. This engineered antigen could be useful for modular RBD-based subunit vaccines to enhance manufacturability and global access, or for further development of variant-specific or broadly acting booster vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , Camundongos , Epitopos/genética , SARS-CoV-2/genética , COVID-19/prevenção & controle , Soroterapia para COVID-19 , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos Transgênicos
4.
iScience ; 25(10): 105038, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36068847

RESUMO

Severe outcomes from SARS-CoV-2 infection are highly associated with preexisting comorbid conditions like hypertension, diabetes, and obesity. We utilized the diet-induced obesity (DIO) model of metabolic dysfunction in K18-hACE2 transgenic mice to model obesity as a COVID-19 comorbidity. Female DIO, but not male DIO mice challenged with SARS-CoV-2 were observed to have shortened time to morbidity compared to controls. Increased susceptibility to SARS-CoV-2 in female DIO was associated with increased viral RNA burden and interferon production compared to males. Transcriptomic analysis of the lungs from all mouse cohorts revealed sex- and DIO-associated differential gene expression profiles. Male DIO mice after challenge had decreased expression of antibody-related genes compared to controls, suggesting antibody producing cell localization in the lung. Collectively, this study establishes a preclinical comorbidity model of COVID-19 in mice where we observed sex- and diet-specific responses that begin explaining the effects of obesity and metabolic disease on COVID-19 pathology.

5.
Front Immunol ; 13: 948431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091051

RESUMO

Emergence of variants of concern (VOC) during the COVID-19 pandemic has contributed to the decreased efficacy of therapeutic monoclonal antibody treatments for severe cases of SARS-CoV-2 infection. In addition, the cost of creating these therapeutic treatments is high, making their implementation in low- to middle-income countries devastated by the pandemic very difficult. Here, we explored the use of polyclonal EpF(ab')2 antibodies generated through the immunization of horses with SARS-CoV-2 WA-1 RBD conjugated to HBsAg nanoparticles as a low-cost therapeutic treatment for severe cases of disease. We determined that the equine EpF(ab')2 bind RBD and neutralize ACE2 receptor binding by virus for all VOC strains tested except Omicron. Despite its relatively quick clearance from peripheral circulation, a 100µg dose of EpF(ab')2 was able to fully protect mice against severe disease phenotypes following intranasal SARS-CoV-2 challenge with Alpha and Beta variants. EpF(ab')2 administration increased survival while subsequently lowering disease scores and viral RNA burden in disease-relevant tissues. No significant improvement in survival outcomes or disease scores was observed in EpF(ab')2-treated mice challenged using the Delta variant at 10µg or 100µg doses. Overall, the data presented here provide a proof of concept for the use of EpF(ab')2 in the prevention of severe SARS-CoV-2 infections and underscore the need for either variant-specific treatments or variant-independent therapeutics for COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Cavalos , Humanos , Imunização Passiva , Melfalan , Camundongos , Pandemias , SARS-CoV-2/genética , gama-Globulinas
6.
PLoS One ; 17(8): e0273430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36037222

RESUMO

The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.


Assuntos
COVID-19 , Pneumonia , Animais , Antivirais , COVID-19/genética , Modelos Animais de Doenças , Humanos , Interferons , Melfalan , Camundongos , Camundongos Transgênicos , Pandemias , SARS-CoV-2 , gama-Globulinas
7.
mSphere ; 7(4): e0024322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35968964

RESUMO

The ongoing COVID-19 pandemic has contributed largely to the global vaccine disparity. Development of protein subunit vaccines can help alleviate shortages of COVID-19 vaccines delivered to low-income countries. Here, we evaluated the efficacy of a three-dose virus-like particle (VLP) vaccine composed of hepatitis B surface antigen (HBsAg) decorated with the receptor binding domain (RBD) from the Wuhan or Beta SARS-CoV-2 strain adjuvanted with either aluminum hydroxide (alum) or squalene in water emulsion (SWE). RBD HBsAg vaccines were compared to the standard two doses of Pfizer mRNA vaccine. Alum-adjuvanted vaccines were composed of either HBsAg conjugated with Beta RBD alone (ß RBD HBsAg+Al) or a combination of both Beta RBD HBsAg and Wuhan RBD HBsAg (ß/Wu RBD HBsAg+Al). RBD vaccines adjuvanted with SWE were formulated with Beta RBD HBsAg (ß RBD HBsAg+SWE) or without HBsAg (ß RBD+SWE). Both alum-adjuvanted RBD HBsAg vaccines generated functional RBD IgG against multiple SARS-CoV-2 variants of concern (VOC), decreased viral RNA burden, and lowered inflammation in the lung against Alpha or Beta challenge in K18-hACE2 mice. However, only ß/Wu RBD HBsAg+Al was able to afford 100% survival to mice challenged with Alpha or Beta VOC. Furthermore, mice immunized with ß RBD HBsAg+SWE induced cross-reactive neutralizing antibodies against major VOC of SARS-CoV-2, lowered viral RNA burden in the lung and brain, and protected mice from Alpha or Beta challenge similarly to mice immunized with Pfizer mRNA. However, RBD+SWE immunization failed to protect mice from VOC challenge. Our findings demonstrate that RBD HBsAg VLP vaccines provided similar protection profiles to the approved Pfizer mRNA vaccines used worldwide and may offer protection against SARS-CoV-2 VOC. IMPORTANCE Global COVID-19 vaccine distribution to low-income countries has been a major challenge of the pandemic. To address supply chain issues, RBD virus-like particle (VLP) vaccines that are cost-effective and capable of large-scale production were developed and evaluated for efficacy in preclinical mouse studies. We demonstrated that RBD-VLP vaccines protected K18-hACE2 mice against Alpha or Beta challenge similarly to Pfizer mRNA vaccination. Our findings showed that the VLP platform can be utilized to formulate immunogenic and efficacious COVID-19 vaccines.


Assuntos
COVID-19 , Vacinas de Partículas Semelhantes a Vírus , Compostos de Alúmen , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Emulsões , Antígenos de Superfície da Hepatite B/genética , Humanos , Melfalan , Camundongos , Camundongos Endogâmicos BALB C , Pandemias , RNA Mensageiro , RNA Viral , SARS-CoV-2 , Esqualeno , Vacinas Sintéticas , Água , gama-Globulinas , Vacinas de mRNA
8.
NPJ Vaccines ; 7(1): 36, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35288576

RESUMO

SARS-CoV-2 is a viral respiratory pathogen responsible for the current global pandemic and the disease that causes COVID-19. All current WHO approved COVID-19 vaccines are administered through the muscular route. We have developed a prototype two-dose vaccine (BReC-CoV-2) by combining the Receptor Binding Domain (RBD) antigen, via conjugation to Diphtheria toxoid (EcoCRM®). The vaccine is adjuvanted with Bacterial Enzymatic Combinatorial Chemistry (BECC), BECC470. Intranasal (IN) administration of BreC-CoV-2 in K18-hACE2 mice induced a strong systemic and localized immune response in the respiratory tissues which provided protection against the Washington strain of SARS-CoV-2. Protection provided after IN administration of BReC-CoV-2 was associated with decreased viral RNA copies in the lung, robust RBD IgA titers in the lung and nasal wash, and induction of broadly neutralizing antibodies in the serum. We also observed that BReC-CoV-2 vaccination administered using an intramuscular (IM) prime and IN boost protected mice from a lethal challenge dose of the Delta variant of SARS-CoV-2. IN administration of BReC-CoV-2 provided better protection than IM only administration to mice against lethal challenge dose of SARS-CoV-2. These data suggest that the IN route of vaccination induces localized immune responses that can better protect against SARS-CoV-2 than the IM route in the upper respiratory tract.

9.
J Virol ; 96(6): e0218421, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35080423

RESUMO

SARS-CoV-2 variants of concern (VoC) are impacting responses to the COVID-19 pandemic. Here, we utilized passive immunization using human convalescent plasma (HCP) obtained from a critically ill COVID-19 patient in the early pandemic to study the efficacy of polyclonal antibodies generated to ancestral SARS-CoV-2 against the Alpha, Beta, and Delta VoC in the K18 human angiotensin converting enzyme 2 (hACE2) transgenic mouse model. HCP protected mice from challenge with the original WA-1 SARS-CoV-2 strain; however, only partially protected mice challenged with the Alpha VoC (60% survival) and failed to save Beta challenged mice from succumbing to disease. HCP treatment groups had elevated receptor binding domain (RBD) and nucleocapsid IgG titers in the serum; however, Beta VoC viral RNA burden in the lung and brain was not decreased due to HCP treatment. While mice could be protected from WA-1 or Alpha challenge with a single dose of HCP, six doses of HCP could not decrease mortality of Delta challenged mice. Overall, these data demonstrate that VoC have enhanced immune evasion and this work underscores the need for in vivo models to evaluate future emerging strains. IMPORTANCE Emerging SARS-CoV-2 VoC are posing new problems regarding vaccine and monoclonal antibody efficacy. To better understand immune evasion tactics of the VoC, we utilized passive immunization to study the effect of early-pandemic SARS-CoV-2 HCP against, Alpha, Beta, and Delta VoC. We observed that HCP from a human infected with the original SARS-CoV-2 was unable to control lethality of Alpha, Beta, or Delta VoC in the K18-hACE2 transgenic mouse model of SARS-CoV-2 infection. Our findings demonstrate that passive immunization can be used as a model to evaluate immune evasion of emerging VoC strains.


Assuntos
COVID-19/terapia , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Animais , Anticorpos Neutralizantes/imunologia , COVID-19/prevenção & controle , Modelos Animais de Doenças , Humanos , Imunização Passiva , Melfalan , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , gama-Globulinas , Soroterapia para COVID-19
10.
bioRxiv ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972945

RESUMO

SARS-CoV-2 variants of concern (VoCs) are impacting responses to the COVID-19 pandemic. Here we present a comparison of the SARS-CoV-2 USA-WA1/2020 (WA-1) strain with B.1.1.7 and B.1.351 VoCs and identify significant differences in viral propagation in vitro and pathogenicity in vivo using K18-hACE2 transgenic mice. Passive immunization with plasma from an early pandemic SARS-CoV-2 patient resulted in significant differences in the outcome of VoC-infected mice. WA-1-infected mice were protected by plasma, B.1.1.7-infected mice were partially protected, and B.1.351-infected mice were not protected. Serological correlates of disease were different between VoC-infected mice, with B.1.351 triggering significantly altered cytokine profiles than other strains. In this study, we defined infectivity and immune responses triggered by VoCs and observed that early 2020 SARS-CoV-2 human immune plasma was insufficient to protect against challenge with B.1.1.7 and B.1.351 in the mouse model.

11.
Virology ; 522: 220-227, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30053655

RESUMO

Macroautophagy (herein referred to as autophagy) is a lysosomal degradation mechanism that is important for maintaining homeostasis and for coping with cellular stress such as nutrient deprivation. Previously, varicella-zoster virus (VZV) was reported to modulate the autophagy pathway in the host. However, how VZV affects the autophagy pathway is still unclear. In this study, we examined how wild-type rOka and attenuated vOka strains of cell-associated VZV affect autophagy in MRC-5 fibroblasts by using ratiometric flow cytometry and immunoblotting methods. While VZV does not prevent autophagosome formation, we demonstrate that, particularly when autophagy is upregulated, VZV inhibits late-stage autophagic flux, likely at the point where autophagosomes and lysosomes fuse or where vesicle contents are degraded. Importantly, inhibition of autophagy yields higher VZV titers. These results substantially contribute to the current view of the interaction between VZV and autophagy, and to a better understanding of VZV pathogenesis.


Assuntos
Autofagossomos/metabolismo , Autofagia , Herpesvirus Humano 3/fisiologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Lisossomos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Fibroblastos/fisiologia , Fibroblastos/virologia , Humanos , Carga Viral , Replicação Viral
12.
J Infect Dis ; 217(7): 1055-1059, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29409017

RESUMO

We studied the relationship between varicella-zoster virus (VZV) DNAemia and development of VZV-specific immunity after administration of live-attenuated zoster vaccine. VZV-DNAemia, detected by polymerase chain reaction (PCR), and VZV-specific effector (Teff) and memory (Tmem) T cells, was measured in 67 vaccinees. PCR was positive in 56% (9 direct, 28 nested) on day 1 and in 16% (1 direct, 10 nested) on day 14. Teff progressively increased in direct-PCR-positive vaccinees up to day 30, but Tmem did not. Conversely, Tmem, but not Teff, increased in direct-PCR-negative vaccinees on day 7. The kinetics of these immune responses and VZV DNAemia suggested that direct-PCR sample positive represented viremia.


Assuntos
DNA Viral/sangue , Vacina contra Herpes Zoster/imunologia , Herpes Zoster/prevenção & controle , Herpesvirus Humano 3/genética , Anticorpos Antivirais/sangue , Herpes Zoster/sangue , Herpes Zoster/virologia , Vacina contra Herpes Zoster/genética , Herpesvirus Humano 3/imunologia , Humanos , Linfócitos T/fisiologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Viremia
13.
J Infect Dis ; 216(8): 1038-1047, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28968855

RESUMO

Posterior uveitis is an ocular complication that can occur with reactivation of varicella-zoster virus (VZV). It may lead to loss of vision due to retinal detachment and chronic inflammation, which often causes more severe disease than the virus infection itself. To increase our understanding of the immune response, we infected the retinal pigment epithelial (RPE) cell line, ARPE-19, with cell-associated VZV and compared its response to that of the MeWo cell line using multiplex assays. We observed (1) a difference in the magnitude and kinetics of cytokine responses between the 2 cell types and (2) differential migration of CD4+ and CD8+ T cells towards these cytokines. Thus, our data provide information about the cytokine and lymphocytic responses to VZV infection of RPE cells, thereby providing a useful platform for future studies to address mechanisms underlying the immunopathology of VZV-associated posterior uveitis.


Assuntos
Citocinas/imunologia , Herpesvirus Humano 3/imunologia , Infecção pelo Vírus da Varicela-Zoster/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Linhagem Celular , Quimiotaxia , Humanos , Infecção pelo Vírus da Varicela-Zoster/virologia
14.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747504

RESUMO

The neurotropic herpesvirus varicella-zoster virus (VZV) establishes a lifelong latent infection in humans following primary infection. The low abundance of VZV nucleic acids in human neurons has hindered an understanding of the mechanisms that regulate viral gene transcription during latency. To overcome this critical barrier, we optimized a targeted capture protocol to enrich VZV DNA and cDNA prior to whole-genome/transcriptome sequence analysis. Since the VZV genome is remarkably stable, it was surprising to detect that VZV32, a VZV laboratory strain with no discernible growth defect in tissue culture, contained a 2,158-bp deletion in open reading frame (ORF) 12. Consequently, ORF 12 and 13 protein expression was abolished and Akt phosphorylation was inhibited. The discovery of the ORF 12 deletion, revealed through targeted genome sequencing analysis, points to the need to authenticate the VZV genome when the virus is propagated in tissue culture.IMPORTANCE Viruses isolated from clinical samples often undergo genetic modifications when cultured in the laboratory. Historically, VZV is among the most genetically stable herpesviruses, a notion supported by more than 60 complete genome sequences from multiple isolates and following multiple in vitro passages. However, application of enrichment protocols to targeted genome sequencing revealed the unexpected deletion of a significant portion of VZV ORF 12 following propagation in cultured human fibroblast cells. While the enrichment protocol did not introduce bias in either the virus genome or transcriptome, the findings indicate the need for authentication of VZV by sequencing when the virus is propagated in tissue culture.


Assuntos
DNA Viral/isolamento & purificação , Genoma Viral , Herpesvirus Humano 3/genética , Fases de Leitura Aberta , Deleção de Sequência , Linhagem Celular , DNA Complementar , Herpesvirus Humano 3/crescimento & desenvolvimento , Humanos , Análise de Sequência de DNA/métodos , Transcriptoma , Proteínas Virais , Vírion , Latência Viral
15.
PLoS Pathog ; 8(2): e1002496, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319441

RESUMO

Gammaherpesvirus cyclins have expanded biochemical features relative to mammalian cyclins, and promote infection and pathogenesis including acute lung infection, viral persistence, and reactivation from latency. To define the essential features of the viral cyclin, we generated a panel of knock-in viruses expressing various viral or mammalian cyclins from the murine gammaherpesvirus 68 cyclin locus. Viral cyclins of both gammaherpesvirus 68 and Kaposi's sarcoma-associated herpesvirus supported all cyclin-dependent stages of infection, indicating functional conservation. Although mammalian cyclins could not restore lung replication, they did promote viral persistence and reactivation. Strikingly, distinct and non-overlapping mammalian cyclins complemented persistence (cyclin A, E) or reactivation from latency (cyclin D3). Based on these data, unique biochemical features of viral cyclins (e.g. enhanced kinase activation) are not essential to mediate specific processes during infection. What is essential for, and unique to, the viral cyclins is the integration of the activities of several different mammalian cyclins, which allows viral cyclins to mediate multiple, discrete stages of infection. These studies also demonstrated that closely related stages of infection, that are cyclin-dependent, are in fact genetically distinct, and thus predict that cyclin requirements may be used to tailor potential therapies for virus-associated diseases.


Assuntos
Ciclinas/metabolismo , Gammaherpesvirinae/genética , Gammaherpesvirinae/patogenicidade , Proteínas Virais/metabolismo , Animais , Ciclinas/genética , Gammaherpesvirinae/metabolismo , Gammaherpesvirinae/fisiologia , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Virais/genética , Ativação Viral/genética , Replicação Viral/genética
16.
PLoS One ; 7(12): e53010, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285249

RESUMO

After primary infection, varicella-zoster virus (VZV) establishes latency in neurons of the dorsal root and trigeminal ganglia. Many questions concerning the mechanism of VZV pathogenesis remain unanswered, due in part to the strict host tropism and inconsistent availability of human tissue obtained from autopsies and abortions. The recent development of induced pluripotent stem (iPS) cells provides great potential for the study of many diseases. We previously generated human iPS cells from skin fibroblasts by introducing four reprogramming genes with non-integrating adenovirus. In this study, we developed a novel protocol to generate sensory neurons from iPS cells. Human iPS cells were exposed to small molecule inhibitors for 10 days, which efficiently converted pluripotent cells into neural progenitor cells (NPCs). The NPCs were then exposed for two weeks to growth factors required for their conversion to sensory neurons. The iPS cell-derived sensory neurons were characterized by immunocytochemistry, flow cytometry, RT-qPCR, and electrophysiology. After differentiation, approximately 80% of the total cell population expressed the neuron-specific protein, ßIII-tubulin. Importantly, 15% of the total cell population co-expressed the markers Brn3a and peripherin, indicating that these cells are sensory neurons. These sensory neurons could be infected by both VZV and herpes simplex virus (HSV), a related alphaherpesvirus. Since limited neuronal populations are capable of supporting the entire VZV and HSV life cycles, our iPS-derived sensory neuron model may prove useful for studying alphaherpesvirus latency and reactivation.


Assuntos
Herpesvirus Humano 3/patogenicidade , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/virologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação Viral da Expressão Gênica , Herpes Zoster/etiologia , Herpes Zoster/genética , Herpes Zoster/patologia , Herpes Zoster/virologia , Herpesvirus Humano 3/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/virologia , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/virologia , Neurogênese/genética , Neurogênese/fisiologia , Células Receptoras Sensoriais/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
17.
J Virol ; 83(21): 11397-401, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19710134

RESUMO

Gamma interferon (IFN-gamma) is critical for the control of chronic infection with murine gammaherpesvirus 68 (gammaHV68). Current data indicate that IFN-gamma has a lesser role in the control of acute replication of gammaHV68. Here, we show that IFN-gamma-deficient mice on the BALB/c genetic background poorly control acute viral replication and succumb to early death by acute pneumonia. Notably, this acute, lethal pneumonia was dependent not only on the viral dose, but also on specific viral genes including the viral cyclin gene, previously identified to be important in promoting optimal chronic infection and reactivation from latency.


Assuntos
Gammaherpesvirinae , Genes Virais , Infecções por Herpesviridae , Interferon gama , Pneumonia , Animais , Ciclinas/genética , Ciclinas/metabolismo , Gammaherpesvirinae/genética , Gammaherpesvirinae/imunologia , Gammaherpesvirinae/patogenicidade , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/patologia , Infecções por Herpesviridae/virologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/virologia , Análise de Sobrevida , Ativação Viral/genética , Ativação Viral/imunologia , Latência Viral/genética , Latência Viral/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
18.
Cancer Res ; 69(13): 5481-9, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19531651

RESUMO

Gammaherpesviruses are tightly controlled by the host immune response, with gammaherpesvirus-associated malignancies prevalent in immune-suppressed individuals. Previously, infection of IFNgamma-unresponsive mice with gammaherpesvirus 68 (gammaHV68) showed that IFNgamma controlled chronic infection, limiting chronic diseases including arteritis and pulmonary fibrosis. Here, we show that gammaHV68-infected IFNgamma receptor-deficient (IFNgammaR(-/-)) mice uniformly develop angiocentric inflammatory lesions in the lung. Prolonged infection revealed a range of outcomes, from spontaneous regression to pulmonary lymphoma. By 12 months of infection, 80% of mice had lymphoid hyperplasia or pulmonary lymphoma; 45% of infected mice developed frank tumors between 5 and 12 months postinfection, with some mice showing systemic involvement. Lymphomas were composed of B lymphocytes and contained latently infected cells. Although IFNgammaR(-/-) mice control chronic gammaHV68 infection poorly, both early and late pathologies were indistinguishable between wild-type and reactivation-defective virus infection, indicating that, in contrast with other previously described gammaHV68-associated pathologies, these chronic diseases were not dependent on the reactivation of latent infection. This distinct combination of latent infection and defined host defect led to a specific and consistent lymphoproliferative disease. Significantly, this mouse model of virus-associated pulmonary B-cell lymphoma closely mimics the full spectrum of human lymphomatoid granulomatosis, an EBV-associated malignancy with no effective treatment.


Assuntos
Linfócitos B/virologia , Gammaherpesvirinae , Infecções por Herpesviridae/imunologia , Interferon gama/farmacologia , Pulmão/virologia , Transtornos Linfoproliferativos/virologia , Neoplasias/virologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Fibroblastos/virologia , Gammaherpesvirinae/genética , Inflamação/imunologia , Inflamação/virologia , Transtornos Linfoproliferativos/imunologia , Camundongos , Circulação Pulmonar , Replicação Viral
19.
Cell Immunol ; 245(2): 103-10, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17521621

RESUMO

We previously demonstrated that induction of splenic cytokine and chemokine secretion in response to Streptococcus pneumoniae (Pn) is MyD88-, but not critically TLR2-dependent, suggesting a role for additional TLRs. In this study, we investigated the role of TLR2, TLR4, and/or TLR9 in mediating this response. We show that a single deficiency in TLR2, TLR4, or TLR9 has only modest, selective effects on cytokine and chemokine secretion, whereas substantial defects were observed in TLR2(-/-)xTLR9(-/-) and TLR2(-/-)xTLR4(-/-) mice, though not as severe as in MyD88(-/-) mice. Chloroquine, which inhibits the function of intracellular TLRs, including TLR9, completely abrogated detectable cytokine and chemokine release in spleen cells from TLR2(-/-)xTLR4(-/-) mice, similar to what is observed for mice deficient in MyD88. These data demonstrate significant synergy between TLR2 and both TLR4 and TLR9 for induction of the MyD88-dependent splenic cytokine and chemokine response to Pn.


Assuntos
Quimiocinas/metabolismo , Citocinas/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Receptores Toll-Like/fisiologia , Animais , Células Cultivadas , Cruzamentos Genéticos , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Análise Serial de Proteínas , Baço/citologia , Baço/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/fisiologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/fisiologia , Receptores Toll-Like/genética
20.
Infect Immun ; 73(7): 4427-31, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15972543

RESUMO

Immunoglobulin G (IgG) antiprotein and antipolysaccharide responses to intact Streptococcus pneumoniae are CD4+-T-cell dependent and therefore might be under the negative control of CD4+ CD25+ regulatory T cells. Injection of anti-interleukin 2 receptor alpha (anti-IL-2Ralpha) MAb to deplete regulatory T cells, injection of agonistic MAb against glucocorticoid-induced tumor necrosis factor receptor family-related protein to inhibit regulatory-T-cell function, and adoptive transfer of regulatory-T-cell-depleted CD4+ T cells into athymic nude mice each had no effect on either the primary or secondary protein- or polysaccharide-specific IgG response to intact S. pneumoniae. Surprisingly, anti-IL-2Ralpha MAb also had no effect on the IgG response to intact S. pneumoniae in MyD88-/- mice or to a soluble protein-polysaccharide conjugate injected into wild-type mice in the absence of adjuvant. Collectively, these data are the first to suggest that, in contrast to their role in limiting chronic cell-mediated immunity, regulatory T cells may play no significant role in an acute humoral immune response to an intact extracellular bacterial pathogen.


Assuntos
Anticorpos Antibacterianos/sangue , Linfócitos T CD4-Positivos/fisiologia , Receptores de Interleucina-2/análise , Streptococcus pneumoniae/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Transferência Adotiva , Animais , Antígenos de Diferenciação/fisiologia , Proteínas de Bactérias/imunologia , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/classificação , Camundongos , Camundongos Endogâmicos BALB C , Fator 88 de Diferenciação Mieloide , Receptores Imunológicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...