Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Appl Opt ; 63(15): 4024-4031, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856494

RESUMO

More accurate dwell time calculation methods are necessary to achieve superior error convergence in producing optically critical components. Although the discrete convolution matrix method finds widespread application, it still has approximate errors in the non-uniform discrete form of tool paths. To address this issue, this paper introduced a modified matrix elements method and presented the general Voronoi polygon area weight calculation forms under different tool path discretization forms. The mechanism is explained through analysis and the validity is verified by numerical simulation. The modified method significantly improved uniformity distribution and accuracy in computation of surface residuals. This improvement holds promise as a guiding principle for the fabrication of ultra-precision optical components.

2.
Opt Express ; 32(9): 15813-15826, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859222

RESUMO

After the aluminum alloy mirror machined by single point diamond turning (SPDT), the residual tool marks and surface accuracy of the aluminum alloy mirror cannot meet the requirements of visible or ultraviolet light system. In this study, a processing method combining magnetorheological finishing (MRF) and chemical mechanical polishing (CMP) is proposed to realize the polishing of aluminum alloy mirrors with high efficiency, high precision and high-quality. Firstly, the properties and composition of passivation layer after MRF were analyzed and the polishing performance of acidic, neutral and alkaline alumina polishing fluid on passivation layer were investigated based on the computer numerical control (CNC) polishing equipment. Based on the experimental results, a new acidic nano-silica polishing fluid which is suitable for the efficient and high-quality removal of passivation layers on aluminum alloy surfaces was developed. Finally, a combined approach of MRF-CMP was used to the directly polishing of a rapidly solidified aluminum mirror (RSA-6061) with a diameter of 100 mm after SPDT. With two iterative of MRF-CMP polishing in 220 minutes, the surface accuracy of the aluminum alloy mirror was improved from 0.1λ (λ=632.8 nm) to 0.024λ, and the surface roughness (Ra) decreased from 3.6 nm to 1.38 nm. The experiment results manifest that high precision, and high-quality aluminum alloy mirror can be achieved by MRF-CMP method with the new developed acid nano-silica polishing fluid and suitable MR polishing fluid. The research results will provide a new strategy for ultra-precision direct polishing of aluminum alloy mirrors and will also give the important technical support for the extensive use of aluminum alloy mirror in visible light and ultraviolet optical systems.

3.
Foods ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731693

RESUMO

Gas chromatography-ion mobility spectroscopy (GC-IMS) was used to analyze the volatile components in dried Hypsizygus marmoreus of different drying methods, including hot air drying (HAD), heat pump drying (HPD), heated freeze-drying (HFD), and unheated freeze-drying (UFD). A total of 116 signal peaks corresponding to 96 volatile compounds were identified, including 25 esters, 24 aldehydes, 23 alcohols, 13 ketones, 10 heterocyclic compounds, 8 carboxylic acids, 7 terpenes, 3 sulfur-containing compounds, 2 nitrogen-containing compounds, and 1 aromatic hydrocarbon. The total content of volatile compounds in H. marmoreus dried by the four methods, from highest to lowest, was as follows: HAD, HPD, HFD, and UFD. The main volatile compounds included carboxylic acids, alcohols, esters, and aldehydes. Comparing the peak intensities of volatile compounds in dried H. marmoreus using different drying methods, it was found that the synthesis of esters, aldehydes, and terpenes increased under hot drying methods such as HAD and HPD, while the synthesis of compounds containing sulfur and nitrogen increased under freeze-drying methods such as HFD and UFD. Nine common key characteristic flavor compounds of dried H. marmoreus were screened using relative odor activity values (ROAV > 1), including ethyl 3-methylbutanoate, acetic acid, 2-methylbutanal, propanal, methyl 2-propenyl sulfate, trimethylamine, 3-octanone, acetaldehide, and thiophene. In the odor description of volatile compounds with ROAV > 0.1, it was found that important flavor components such as trimethylamine, 3-octanone, (E)-2-octenal, and dimethyl disulfide are related to the aroma of seafood. Their ROAV order is HFD > UFD > HPD > HAD, indicating that H. marmoreus using the HFD method have the strongest seafood flavor. The research findings provide theoretical guidance for selecting drying methods and refining the processing of H. marmoreus.

4.
Opt Express ; 32(7): 11150-11170, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570970

RESUMO

The magnetorheological finishing (MRF) of surfaces often results in tool mark errors. A prediction model can effectively guide subsequent processing, necessitating thorough research. To address this issue, this paper introduces an enhanced continuous tool influence function method. This method involves sub dwell time convolution with varying tool influence functions, enabling tool mark prediction. Numerical simulations demonstrate the proposed method's effectiveness, while the data size is estimated to confirm its economic properties. Subsequently, a MRF experiment was conducted, affirming the practicability through power spectral density evaluation. A fast algorithm is given to guide tool mark predictions on large-aperture mirrors fabrication engineering subjected to sub-aperture polishing.

5.
Opt Express ; 32(7): 11241-11258, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570976

RESUMO

Scratches on optical components induce laser damage and limit the increase in laser power. Magnetorheological finishing (MRF) is a highly deterministic optical manufacturing technology that can improve the surface roughness of optical components. Although MRF has exhibited significant potential for reducing subsurface damage and removing scratches, the principle and mechanism behind the scratch removal are not sufficiently understood. In this study, the theory of fluid mechanics is used to analyze the pressure, velocity, and particle trajectory distribution near a scratch. A physical model was developed for the differential removal of scratches at the bottom and surface of the optical components. The morphological evolution of the scratch was predicted during removal, and detailed experiments were performed to verify the effectiveness of the proposed model. The results indicate that scratches expand laterally rather than being completely removed. Furthermore, scratch removal efficiency is greater when the removal direction is perpendicular to the scratch rather than being parallel. This study offers an intrinsic perspective for a comprehensive understanding of the MRF technique used for scratch removal, which can be beneficial for removing scratches from aspherical optical systems.

6.
Foods ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38472821

RESUMO

Freshly harvested Tremella fuciformis contains high water content with an unprotected outer surface and exhibits high respiration rates, which renders it prone to moisture and nutrient loss, leading to decay during storage. Our research utilized ε-poly-L-lysine (ε-PL) and chitosan as a composite coating preservative on fresh T. fuciformis. The findings revealed that the ε-PL + chitosan composite coating preservative effectively delayed the development of diseases and reduced weight loss during storage compared to the control group. Furthermore, this treatment significantly decreased the respiration rate of T. fuciformis and the activity of respiratory metabolism-related enzymes, such as alternative oxidase (AOX), cytochrome c oxidase (CCO), succinic dehydrogenase (SDH), 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase (6-PGDH and G-6-PDH). Additionally, the composite coating preservative also delayed the depletion of ATP and ADP and maintained higher levels of the energy charge while preserving low levels of AMP. It also sustained heightened activities of Mg2+-ATPase, Ca2+-ATPase, and H+-ATPase enzymes. These results demonstrate that utilizing the ε-PL + chitosan composite coating preservative can serve as a sufficiently safe and efficient method for prolonging the shelf life of post-harvest fresh T. fuciformis.

7.
Environ Sci Technol ; 58(2): 1097-1108, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175714

RESUMO

Associations between gaseous pollutant exposure and stillbirth have focused on exposures averaged over trimesters or gestation. We investigated the association between short-term increases in nitrogen dioxide (NO2) and ozone (O3) concentrations and stillbirth risk among a national sample of 116 788 Medicaid enrollees from 2000 to 2014. A time-stratified case-crossover design was used to estimate distributed (lag 0-lag 6) and cumulative lag effects, which were adjusted for PM2.5 concentration and temperature. Effect modification by race/ethnicity and proximity to hydraulic fracturing (fracking) wells was assessed. Short-term increases in the NO2 and O3 concentrations were not associated with stillbirth in the overall sample. Among American Indian individuals (n = 1694), a 10 ppb increase in NO2 concentrations was associated with increased stillbirth odds at lag 0 (5.66%, 95%CI: [0.57%, 11.01%], p = 0.03) and lag 1 (4.08%, 95%CI: [0.22%, 8.09%], p = 0.04) but not lag 0-6 (7.12%, 95%CI: [-9.83%, 27.27%], p = 0.43). Among participants living in zip codes within 15 km of active fracking wells (n = 9486), a 10 ppb increase in NO2 concentration was associated with increased stillbirth odds in single-day lags (2.42%, 95%CI: [0.37%, 4.52%], p = 0.02 for lag 0 and 1.83%, 95%CI: [0.25%, 3.43%], p = 0.03 for lag 1) but not the cumulative lag (lag 0-6) (4.62%, 95%CI: [-2.75%, 12.55%], p = 0.22). Odds ratios were close to the null in zip codes distant from fracking wells. Future studies should investigate the role of air pollutants emitted from fracking and potential racial disparities in the relationship between short-term increases in NO2 concentrations and stillbirth.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Gravidez , Feminino , Humanos , Poluição do Ar/análise , Estudos Cross-Over , Dióxido de Nitrogênio/análise , Material Particulado/análise , Natimorto/epidemiologia , Poluentes Atmosféricos/análise , Ozônio/análise , Exposição Ambiental/análise
8.
Food Chem ; 442: 138448, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38245983

RESUMO

This study was oriented towards the impacts of unique interfacial networks, formed by glycosylated and non-glycosylated egg white proteins, on the characteristics of high internal phase Pickering emulsions (HIPPEs). Glycosylated egg white protein particles (EWPG) manifested a more compact protein tertiary structure and amplified surface hydrophobicity, forming durable coral-like networks at the oil-water interface. The non-glycosylated egg white protein particles (EWP) could form spherical cluster interfacial networks. Raman spectroscopy analysis illuminated that EWPG could exhibit better interactions with aliphatic amino acids via hydrogen bonds and hydrophobic interactions. The release of free fatty acid (FFA) from both HIPPEs followed the first-order kinetic model with a combination of diffusion. EWPG-stabilized HIPPEs demonstrated superior physical stability and cellular antioxidant activity. This research shed light on the promising prospects of HIPPEs as promising amphiphilic delivery systems with capabilities to co-deliver hydrophilic and hydrophobic nutraceuticals and amplify their intracellular biological potency.


Assuntos
Antioxidantes , Ácidos Graxos não Esterificados , Emulsões/química , Antioxidantes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas do Ovo/química , Tamanho da Partícula
9.
Mikrochim Acta ; 191(2): 111, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252316

RESUMO

A simple and ultrasensitive sandwich-type electrochemiluminescence (ECL) immunosensor has been developed using porous three-dimensional gold nanoparticles (Au NPs) iron(Fe)-zinc(Zn) metal-organic frameworks (Au NPs-FeZn-MOFs@luminol) as high-efficiency ECL signal probes with Fe single-atom catalysts (SACs) (Fe-N-C SACs) as potentially advanced coreaction accelerators and dissolved oxygen as a coreaction agent to realize an H2O2-free amplification method for detecting carcinoembryonic antigen (CEA). The cathodic ECL of luminol, which was usually negligible, increased first. Because the Fe-N-C SACs exhibited an outstanding catalytic performance and a unique electronic structure, different reactive oxygen species (ROS) were generated via the oxygen reduction reaction. ROS oxidized the luminol anions to luminol anion radicals, preventing the time-consuming luminol electrochemical oxidation. Furthermore, the luminol anion radicals generated in situ reacted with ROS to produce potent cathodic ECL emissions. The immunosensor exhibited favorable analytical accuracy (detection range: 0.1 pg mL-1 - 80 ng mL-1), and its detection limit for serum samples was 0.031 pg mL-1 (S/N = 3). Consequently, the proposed strategy offers a new approach for early screening of CEA.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Antígeno Carcinoembrionário , Ouro , Imunoensaio , Luminol , Espécies Reativas de Oxigênio , Ferro , Ânions
10.
Opt Express ; 31(25): 42150-42164, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087595

RESUMO

Fused silica glass is widely used in optical systems, including astronomical telescopes, laser systems, optical communications, and the semiconductor industry. At the same time, the surface quality of the fused silica directly determines the performance and precision of the system. In order to analyze the microscopic surface interaction based on the basis of tribology, a roughness contact model of pitch and fused silica glass surfaces was established. Analyze the performance parameters of contact materials, surface roughness, and the relationship between load and contact area. Pitch materials with a higher plasticity index have a larger elastoplastic contact area with the fused silica surface during the polishing process. The experimental results demonstrate that the surface quality of the polished fused silica improves as the plasticity index of the pitch material increases. At the same time, judging from the PSD curve results, the polished surface of the No. 55 pitch on the spatial-frequency band curve (100-101/mm) is significantly lower than the other two brands of pitch. Additionally, the Ra value of the workpiece surface roughness reaches 0.091 nm. The results of this study provide important theoretical guidance for achieving full-diameter, full-frequency ultra-smooth polishing of large-diameter complex curved surfaces.

11.
Opt Express ; 31(21): 34917-34936, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859236

RESUMO

Industrial robots with six degrees-of-freedom have significant potential for use in optical manufacturing owing to their flexibility, low cost, and high space utilisation. However, the low trajectory accuracy of robots affects the manufacturing accuracy of optical components when combined with magnetorheological finishing (MRF). Moreover, general robot trajectory-error compensation methods cannot compensate for the running errors of large robots with high precision. To address this problem, a three-dimensional (3D) tool influence function (TIF) model based on inverse distance interpolation is developed in this study to accurately predict the TIF of different polishing gaps. A high-precision robot-MRF polishing strategy based on variable TIFs and surface shape accuracy of polished optics is proposed to achieve high-precision manufacturing without compensating for trajectory errors. Subsequently, the accuracy of a ϕ420 mm fused silica mirror is experimentally verified to be from 0.11 λ RMS to 0.013 λ RMS. This validates that the robot-MRF can achieve high-precision polishing without compensating for trajectory errors. Furthermore, the proposed model will promote the applications of industrial robots in optical manufacturing and will serve as a reference in the field of intelligent optical manufacturing.

12.
Environ Int ; 181: 108266, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37847981

RESUMO

BACKGROUND: Despite strong evidence of the association of fine particulate matter (PM2.5) exposure with an increased risk of lung cancer mortality, few studies had investigated associations of multiple pollutants simultaneously, or with incidence, or using causal methods. Disparities were also understudied. OBJECTIVES: We investigated long-term effects of PM2.5, nitrogen dioxide (NO2), warm-season ozone, and particle radioactivity (PR) exposures on lung cancer incidence in a nationwide cohort. METHODS: We conducted a cohort study with Medicare beneficiaries (aged ≥ 65 years) continuously enrolled in the fee-for-service program in the contiguous US from 2001 to 2016. Air pollution exposure was averaged across three years and assigned based on ZIP code of residence. We fitted Cox proportional hazards models to estimate the hazard ratio (HR) for lung cancer incidence, adjusted for individual- and neighborhood-level confounders. As a sensitivity analysis, we evaluated the causal relationships using inverse probability weights. We further assessed effect modifications by individual- and neighborhood-level covariates. RESULTS: We identified 166,860 lung cancer cases of 12,429,951 studied beneficiaries. In the multi-pollutant model, PM2.5 and NO2 exposures were statistically significantly associated with increased lung cancer incidence, while PR was marginally significantly associated. Specifically, the HR was 1.008 (95% confidence interval [CI]: 1.005, 1.011) per 1-µg/m3 increase in PM2.5, 1.013 (95% CI: 1.012, 1.013) per 1-ppb increase in NO2, and 1.005 (0.999, 1.012) per 1-mBq/m3 increase in PR. At low exposure levels, all pollutants were associated with increased lung cancer incidence. Men, older individuals, Blacks, and residents of low-income neighborhoods experienced larger effects of PM2.5 and PR. DISCUSSION: Long-term PM2.5, NO2, and PR exposures were independently associated with increased lung cancer incidence among the national elderly population. Low-exposure analysis indicated that current national standards for PM2.5 and NO2 were not restrictive enough to protect public health, underscoring the need for more stringent air quality regulations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Neoplasias Pulmonares , Masculino , Humanos , Idoso , Estados Unidos/epidemiologia , Medicare , Poluentes Atmosféricos/análise , Estudos de Coortes , Incidência , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/induzido quimicamente , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise
13.
Environ Sci Technol ; 57(46): 18001-18012, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37839072

RESUMO

In 1987, the United States Environmental Protection Agency recommended installing a mitigation system when the indoor concentration of radon, a well-known carcinogenic radioactive gas, is at or above 148 Bq/m3. In response, tens of millions of short-term radon measurements have been conducted in residential buildings over the past three decades either for disclosure or to initially evaluate the need for mitigation. These measurements, however, are currently underutilized to assess population radon exposure in epidemiological studies. Based on two relatively small radon surveys, Lawrence Berkeley National Laboratory developed a state-of-the-art national radon model. However, this model only provides coarse and invariant radon estimations, which limits the ability of epidemiological studies to accurately investigate the health effects of radon, particularly the effects of acute exposure. This study involved obtaining over 2.8 million historical short-term radon measurements from independent laboratories. With the use of these measurements, an innovative spatial random forest (SRF) model was developed based on geological, architectural, socioeconomical, and meteorological predictors. The model was used to estimate monthly community-level radon concentrations for ZIP Code Tabulation Areas (ZCTAs) in the northeastern and midwestern regions of the United States from 2001 to 2020. Via cross-validation, we found that our ZCTA-level predictions were highly correlated with observations. The prediction errors declined quickly as the number of radon measurements in a ZCTA increased. When ≥15 measurements existed, the mean absolute error was 24.6 Bq/m3, or 26.5% of the observed concentrations (R2 = 0.70). Our study demonstrates the potential of the large amount of historical short-term radon measurements that have been obtained to accurately estimate longitudinal ZCTA-level radon exposures at unprecedented levels of resolutions and accuracy.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Estados Unidos , Radônio/análise , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Algoritmo Florestas Aleatórias , Meio-Oeste dos Estados Unidos , Habitação
14.
J Food Sci ; 88(8): 3341-3356, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421346

RESUMO

During the processing of maize, Stigma maydis, also known as corn silk, is normally discarded as waste. Phytochemical research was carried out on the S. maydis to use it as a valuable source of bioactive components. This research aimed to maximize the recovery of free and bound phenolic compounds from corn silk under optimal experimental conditions. Response surface design was operated to optimize the alkaline hydrolysis extraction of bound phytochemicals from corn silk based on total phenolic content and DPPH radical scavenging activity. The optimum conditions (i.e., NaOH concentration 2 M, digestion time 135 min, digestion temperature of 37.5°C, the solid-to-solvent ratio of 1:17.5, and acetone) were obtained. The optimum parameters were used to extract the corn silk. The structures of two compounds isolated from ethyl acetate extracts were then identified as friedelin (1) and (E)-4-(4-hydroxy-3-methoxyphenyl) but-3-en-2-one (2). The DPPH, H2 O2 , and ABTS % inhibition of the compounds is as follows: compound (1) 74.81%, 76.8%, 70.33% and compound (2) 70.37%, 56.70% and 57.46%, respectively. The current study has opened previously unexplored perspectives of the composition of bound compounds in corn silk and established the foundations for more effective processing and utilization of corn waste. PRACTICAL APPLICATION: Bound phenolic compounds from corn silk under optimal experimental conditions were obtained. Corn silk can be utilized as a type of medicinal herb as well as a source of inexpensive natural antioxidants.


Assuntos
Antioxidantes , Plantas Medicinais , Antioxidantes/química , Extratos Vegetais/química , Zea mays/química , Fenóis/química , Seda
15.
J Air Waste Manag Assoc ; 73(7): 519-524, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37311115

RESUMO

Radon is a prevalent carcinogenic gas and the leading cause of lung cancer in the United States besides smoking. As the residential environment is the primary source of radon exposure, accessible and accurate measurements of radon in this environment are essential. However, no radon monitors have been evaluated that are inexpensive enough for regular household use. In this study, we examine two household-grade, continuous monitoring devices, the Ecosense RadonEye and EcoQube. We compare them to two research-grade instruments, the Durridge Company Rad7 and the Rad Elec Inc. E-PERM. In our study, the Ecosense household radon monitors performed accurately and can be used by homeowners and researchers alike as an affordable and reliable radon sensor.Implications: The ability of homeowners and renters to regularly monitor the radon levels inside their home is an important preventative health measure. However, low-cost instrumentation is needed that can provide accurate radon measurements. In this study, we show that the affordable Ecosense continuous monitors produce results that are in line with expensive research-grade instruments in a residential environment, over a range of concentrations. The Ecosense monitors may be suitable for home use, and they may provide a solution that can be used by policymakers and home-dwellers alike to improve regular radon monitoring in residences.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Monitoramento de Radiação , Radônio , Humanos , Estados Unidos , Radônio/análise , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Habitação , Neoplasias Pulmonares/etiologia , Poluição do Ar em Ambientes Fechados/análise
16.
Pediatr Pulmonol ; 58(7): 2042-2049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37083192

RESUMO

BACKGROUND: Radon may have a role in obstructive lung disease outside its known carcinogenicity. Little is known about radon's effects on asthma morbidity. OBJECTIVE: To determine the effect of radon on fractional exhaled nitric oxide (FE NO), asthma symptom-days, and lung function in inner-city asthmatic school children. METHODS: Two hundred ninety-nine school-aged asthmatic children enrolled in the School Inner-City Asthma Study (SICAS-1) were followed. One and two-month averaged radon was assessed using a spatiotemporal model predicting zip code-specific monthly exposures. FE NO and spirometry were measured twice during the academic year. Asthma symptoms were assessed four times during the academic year. The interaction between indoor radon exposure (Bq/m3 ) and seasonality predicting log-transformed FE NO, forced expiratory volume in 1 s (FEV1 ) % predicted, forced vital capacity (FVC) % predicted, FEV1 /FVC, and asthma symptom-days was evaluated. RESULTS: Participants with high radon exposure had greater change in FE NO from warm to cold periods compared to low radon exposure (interaction p = 0.0013). Participants with >50th percentile radon exposure experience significant FE NO increase from warm to cold weather ( ß $\beta $ = 0.29 [95% confidence interval [CI]: 0.04-0.54], p = 0.0240). We report a positive association between radon 1-month moving average (incidence rate ratio [IRR] = 1.01, p = 0.0273) and 2-month moving average (IRR = 1.01, p = 0.0286) with maximum asthma symptom-days (n = 299, obs = 1167). CONCLUSIONS: In asthmatic children, radon may be associated with increased asthma morbidity, suggesting radon may be a modifiable environmental risk factor for airway inflammation.


Assuntos
Asma , Radônio , Criança , Humanos , Asma/epidemiologia , Asma/etiologia , Asma/diagnóstico , Testes de Função Respiratória , Espirometria , Volume Expiratório Forçado , Morbidade , Radônio/efeitos adversos , Óxido Nítrico
17.
Int J Biol Macromol ; 238: 124062, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36933600

RESUMO

The widespread antibiotic resistance of bacteria has become one of the most severe threats to public health. However, the mechanisms that allow microbial acquisition of resistance are still poorly understood. In the present study, a novel BON domain-containing protein was heterologously expressed in Escherichia coli. It functions as an efflux pump-like to confer resistance to various antibiotics, especially for ceftazidime, with a >32-fold increase in minimum inhibitory concentration (MIC). The fluorescence spectroscopy experiment indicated that BON protein could interact with several metal ions, such as copper and silver, which has been associated with the induced co-regulation of antibiotic and heavy metal resistance in bacteria. Furthermore, the BON protein was demonstrated to spontaneously self-assemble into a trimer and generate a central pore-like architecture for antibiotic transporting. A WXG motif as a molecular switch is essential for forming the transmembrane oligomeric pores and controls the interaction between BON protein and cell membrane. Based on these findings, a mechanism termed "one-in, one-out", was proposed for the first time. The present study provides new insights into the structure and function of BON protein and a previously unidentified antibiotic resistance mechanism, filling the knowledge gap in understanding BON protein-mediated intrinsic antibiotic resistance.


Assuntos
Antibacterianos , Metais Pesados , Antibacterianos/farmacologia , Metais Pesados/farmacologia , Bactérias , Cobre , Prata , Escherichia coli/genética
18.
Foods ; 12(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36981096

RESUMO

In the present study, a feruloyl esterase DLFae4 identified in our previous research was modified by error-prone PCR and site-directed saturation mutation to enhance the catalytic efficiency and acyltransferase activity further. Five mutants with 6.9-118.9% enhanced catalytic activity toward methyl ferulate (MFA) were characterized under the optimum conditions. Double variant DLFae4-m5 exhibited the highest hydrolytic activity (270.97 U/mg), the Km value decreased by 83.91%, and the Kcat/Km value increased by 6.08-fold toward MFA. Molecular docking indicated that a complex hydrogen bond network in DLFae4-m5 was formed, with four of five bond lengths being shortened compared with DLFae4, which might account for the increase in catalytic activity. Acyl transfer activity assay revealed that the activity of DLFae4 was as high as 1550.796 U/mg and enhanced by 375.49% (5823.172 U/mg) toward 4-nitrophenyl acetate when residue Ala-341 was mutated to glycine (A341G), and the corresponding acyl transfer efficiency was increased by 7.7 times, representing the highest acyltransferase activity to date, and demonstrating that the WGG motif was pivotal for the acyltransferase activity in family VIII carboxylesterases. Further experiments indicated that DLFae4 and variant DLFae4 (A341G) could acylate cyanidin-3-O-glucoside effectively in aqueous solution. Taken together, our study suggested the effectiveness of error-prone PCR and site-directed saturation mutation to increase the specific activity of enzymes and may facilitate the practical application of this critical feruloyl esterase.

19.
J Expo Sci Environ Epidemiol ; 33(3): 455-464, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36725923

RESUMO

BACKGROUND: Knowing the geographical and temporal variation in radon concentrations is essential for assessing residential exposure to radon, the leading cause of lung cancer in never-smokers in the United States. Tens of millions of short-term radon measurements, which normally last 2 to 4 days, have been conducted during the past decades. However, these massive short-term measurements have not been commonly used in exposure assessment because of the conflicting evidence regarding their correlation with long-term measurements, the gold standard of assessing long-term radon exposure. OBJECTIVE: We aim to evaluate the extent to which a long-term radon measurement can be predicted by a collocated short-term radon measurement under different conditions. METHODS: We compiled a national dataset of 2245 pairs of collocated short- and long-term measurements, analyzed the predictability of long-term measurements with stratified linear regression and bootstrapping resampling. RESULTS: We found that the extent to which a long-term measurement can be predicted by the collocated short-term measurement was a joint function of two factors: the temporal difference in starting dates between two measurements and the length of the long-term measurement. Short-term measurements, jointly with other factors, could explain up to 79% (0.95 Confidence Interval [CI]: 0.73-0.84) of the variance in seasonal radon concentrations and could explain up to 67% (0.95 CI: 0.52-0.81) of the variance in annual radon concentrations. The large proportions of variance explained suggest that short-term measurement can be used as convenient proxy for seasonal radon concentrations. Accurate annual radon estimation entails averaging multiple short-term measurements in different seasons. SIGNIFICANCE: Our findings will facilitate the usage of abundant short-term radon measurements, which have been obtained but was previously underutilized in assessing residential radon exposure. IMPACT STATEMENT: Tens of millions of short-term radon measurements have been conducted but underutilized in assessing residential exposure to radon, the greatest cause of lung cancer in non-smokers. We investigate the correlations between collocated short- and long-term measurements in 2245 U.S. buildings and find that short-term measurements can explain ~75% of the variance in subsequent long-term measurements in the same buildings. Our results can facilitate the usage of massive short-term radon measurements that have been conducted to estimate the spatial and longitudinal distribution of radon concentrations, which can be used in epidemiological studies to quantify the health effects of radon.


Assuntos
Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Radônio , Estados Unidos , Humanos , Radônio/análise , Poluição do Ar em Ambientes Fechados/análise , Estações do Ano , Neoplasias Pulmonares/epidemiologia , Habitação
20.
ACS Synth Biol ; 12(3): 877-891, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36821745

RESUMO

Although a variety of whole-cell-based biosensors have been developed for different applications in recent years, most cannot meet practical requirements due to insufficient sensing performance. Here, we constructed two sets of modular genetic circuits by serial and parallel modes capable of significantly amplifying the input/output signal in Escherichia coli. The biosensors are engineered using σ54-dependent phenol-responsive regulator DmpR as a sensor and enhanced green fluorescent protein as a reporter. Cells harboring serial and parallel genetic circuits displayed nearly 9- and 16-fold higher sensitivity than the general circuit. The genetic circuits enabled rapid detection of six phenolic contaminants in 12 h and showed the low limit of detection of 2.5 and 2.2 ppb for benzopyrene (BaP) and tetracycline (Tet), with a broad detection range of 0.01-1 and 0.005-5 µM, respectively. Furthermore, the positive rate was as high as 73% when the biosensor was applied to screen intracellular enzymes with ester-hydrolysis activity from soil metagenomic libraries using phenyl acetate as a phenolic substrate. Several novel enzymes were isolated, identified, and biochemically characterized, including serine peptidases and alkaline phosphatase family protein/metalloenzyme. Consequently, this study provides a new signal amplification method for cell-based biosensors that can be widely applied to environmental contaminant assessment and screening of intracellular enzymes.


Assuntos
Proteínas de Bactérias , Técnicas Biossensoriais , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas Biossensoriais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...