Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894247

RESUMO

Few-shot object detection is a challenging task aimed at recognizing novel classes and localizing with limited labeled data. Although substantial achievements have been obtained, existing methods mostly struggle with forgetting and lack stability across various few-shot training samples. In this paper, we reveal two gaps affecting meta-knowledge transfer, leading to unstable performance and forgetting in meta-learning-based frameworks. To this end, we propose sample normalization, a simple yet effective method that enhances performance stability and decreases forgetting. Additionally, we apply Z-score normalization to mitigate the hubness problem in high-dimensional feature space. Experimental results on the PASCAL VOC data set demonstrate that our approach outperforms existing methods in both accuracy and stability, achieving up to +4.4 mAP@0.5 and +5.3 mAR in a single run, with +4.8 mAP@0.5 and +5.1 mAR over 10 random experiments on average. Furthermore, our method alleviates the drop in performance of base classes. The code will be released to facilitate future research.

3.
J Am Chem Soc ; 146(20): 13903-13913, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721817

RESUMO

Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.


Assuntos
Materiais Biocompatíveis , Ácido Cítrico , Géis , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Ácido Cítrico/química , Géis/química , Carnitina/química , Líquidos Iônicos/química , Resistência à Tração , Adesivos/química
4.
Adv Mater ; 36(25): e2313845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38452373

RESUMO

The resistance of gels and elastomers increases significantly with tensile strain, which reduces conductive stability and restricts their use in stable and reliable electronics. Here, highly conductive tough hydrogels composed of silver nanowires (AgNWs), liquid metal (LM), and poly(vinyl alcohol) (PVA) are fabricated. The stretch-induced orientations of AgNWs, deformable LM, and PVA nanocrystalline create conductive pathways, enhancing the mechanical properties of the hydrogels, including increased ultimate fracture stress (13-33 MPa), strain (3000-5300%), and toughness (390.9-765.1 MJ m-3). Notably, the electrical conductivity of the hydrogels is significantly improved from 4.05 × 10-3 to 24 S m-1 when stretched to 4200% strain, representing a 6000-fold enhancement. The incorporation of PVA nanocrystalline, deformable LM, and AgNWs effectively mitigates stress concentration at the crack tip, thereby conferring crack propagation insensitivity and fatigue resistance to the hydrogels. Moreover, the hydrogels are designed with a reversible crosslinking network, allowing for water-induced recycling.

5.
Int J Surg ; 110(6): 3373-3381, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477110

RESUMO

BACKGROUND: Obesity is a widely recognized global public health issue, and bariatric surgery has emerged as an effective intervention for alleviating obesity associated health complications. However, the impact of bariatric surgery on male reproductive function remains inconclusive in the literature. The current understanding of the impact of laparoscopic sleeve gastrectomy (LSG) on male reproductive function remains ambiguous, despite its status as the most commonly performed bariatric surgery. This prospective cohort study aimed to investigate the impact of LSG on erectile function and semen quality. PATIENTS AND METHODS: A total of 34 obese patients were enrolled in this study and underwent LSG. Prior to the operation and at 3, 6, and 12 months postoperation, all participants were required to complete the International Index of Erectile Function-5 (IIEF-5) questionnaire and undergo a nocturnal erectile function test and semen quality analysis. RESULTS: Within 12 months postoperation, BMI, blood lipids, and insulin resistance showed significant improvement. The IIEF-5 score increased significantly (18.88±5.97 vs. 23.78±3.19, P <0.05), and the frequency and duration of erections significantly improved compared to baseline. Sperm concentration, total motility, survival rate, and sperm morphology parameters exhibited a significant decline at 3 months but demonstrated a significant improvement at 6 and 12 months postoperation. At 12 months, sperm concentration was shown to be correlated with changes in zinc (r=0.25, P =0.033) as well as changes in testosterone (r=0.43, P =0.013). CONCLUSIONS: LSG has beneficial effects on erectile function, despite a transient decline in semen quality at 3 months postoperatively, followed by a significant improvement at 12 months.


Assuntos
Gastrectomia , Laparoscopia , Obesidade , Humanos , Masculino , Estudos Prospectivos , Adulto , Laparoscopia/métodos , Gastrectomia/métodos , Gastrectomia/efeitos adversos , Obesidade/cirurgia , Obesidade/complicações , Análise do Sêmen , China , Disfunção Erétil/etiologia , Pessoa de Meia-Idade , Estudos de Coortes , Cirurgia Bariátrica/métodos , População do Leste Asiático
6.
Adv Mater ; 36(16): e2312249, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193634

RESUMO

Ionic thermocells convert heat into electricity and are promising power sources for electronic devices. However, discontinuous and small electricity output limits practical use under varying environmental conditions. Here, a thermogalvanic ionogel with a high Seebeck coefficient (32.4 mV K-1) is designed. Thermocells that combine thermogalvanic ionogel-based thermocells, which realize all-weather power generation via passive radiative cooling, are also developed. These thermocells generate electricity continuously under varying weather conditions and over a wide temperature range (-40 to 90 °C), with a normalized power density of 25.84 mW m-2 K-2. Advanced characterization shows that the chaotropic effect enhances the Seebeck coefficient, while the self-supplying temperature difference given the radiative cooling structure enables all-weather power generation. These results provide an effective strategy for developing practical thermocells suitable for diverse daily and seasonal variations.

7.
Adv Mater ; 36(13): e2311214, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38150638

RESUMO

With the continuous development of impact protection materials, lightweight, high-impact resistance, flexibility, and controllable toughness are required. Here, tough and impact-resistant poly(ionic liquid) (PIL)/poly(hydroxyethyl acrylate) (PHEA) double-network (DN) elastomers are constructed via multiple cross-linking of polymer networks and cation-π interactions of PIL chains. Benefiting from the strong noncovalent cohesion achieved by the cation-π interactions in PIL chains, the prepared PIL DN elastomers exhibit extraordinary compressive strength (95.24 ± 2.49 MPa) and toughness (55.98 ± 0.66 MJ m-3) under high-velocity impact load (5000 s-1). The synthesized PIL DN elastomer combines strength and flexibility to protect fragile items from impact. This strategy provides a new research idea in the field of the next generation of safety and protective materials.

8.
J. physiol. biochem ; 79(3): 569-582, ago. 2023.
Artigo em Inglês | IBECS | ID: ibc-223749

RESUMO

The Roux-en-Y gastric bypass (RYGB) is a one-of-a-kind treatment among contemporary bariatric surgical procedures, and its therapeutic effects for type 2 diabetes mellitus (T2DM) are satisfactory. The present study performed isobaric tags for relative and absolute quantification (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis identifying different proteomics between T2DM rats with or without Roux-en-Y gastric bypass (RYGB) surgery, and GTP binding elongation factor GUF1 (Guf1) was first found to be significantly upregulated in rats from the T2DM plus RYGB group. In the cellular lipotoxicity model induced by palmitic acid stimulation of rat pancreatic beta cell line, INS-1, palmitic acid treatment inhibited cell viability, suppressed GSIS, promoted lipid droplet formation, promoted cell apoptosis, and induced mitochondrial membrane potential loss. The effects of palmitic acid on INS-1 cells mentioned above could be partially eliminated by Guf1 overexpression but aggravated by Guf1 knockdown. Last, under palmitic acid treatment, Guf1 overexpression promotes the PI3K/Akt and NF-κB signaling but inhibits the AMPK activation. Guf1 is upregulated in T2DM rats who received RYGB, and Guf1 overexpression improves cell mitochondrial functions, increases cell proliferation, inhibits cell apoptosis, and promotes cell functions in palmitic acid-treated β cells. (AU)


Assuntos
Animais , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Derivação Gástrica/métodos , Células Secretoras de Insulina/metabolismo , Cromatografia Líquida , Ácido Palmítico , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA