Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37893374

RESUMO

Gallium nitride (GaN) possesses remarkable characteristics such as a wide bandgap, high critical electric field, robust antiradiation properties, and a high saturation velocity for high-power devices. These attributes position GaN as a pivotal material for the development of power devices. Among the various GaN-based devices, vertical GaN MOSFETs stand out for their numerous advantages over their silicon MOSFET counterparts. These advantages encompass high-power device applications. This review provides a concise overview of their significance and explores their distinctive architectures. Additionally, it delves into the advantages of vertical GaN MOSFETs and highlights their recent advancements. In conclusion, the review addresses methods to enhance the breakdown voltage of vertical GaN devices. This comprehensive perspective underscores the pivotal role of vertical GaN MOSFETs in the realm of power electronics and their continual progress.

2.
Materials (Basel) ; 16(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37176258

RESUMO

A high-pressure (HP) GaN nucleation layer (NL) was inserted between AlGaN buffer and an unintentionally doped (UID) GaN layer of an AlGaN/GaN HEMT on Si. The XRD and TEM showed that when the V/III ratio was optimized during the HP-GaN NL growth, the edge dislocation density in the HP-GaN NL layer could be reduced significantly. Experimental results exhibited a lower off-state leakage current, higher maximum ID and Gm (corresponding to 22.5% and 21.7% improvement, respectively), and lower on-state resistance. These results demonstrate that the electrical properties of the AlGaN/GaN HEMT can be improved through the insertion of a HP-GaN NL.

3.
Micromachines (Basel) ; 14(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984926

RESUMO

In this work, we demonstrated the thermal analysis of different flip-chip bonding designs for high power GaN HEMT developed for power electronics applications, such as power converters or photonic driver applications, with large gate periphery and chip size, as well as an Au metal heat-spreading layer deposited on top of a planarized dielectric/passivation layer above the active region. The Au bump patterns can be designed with high flexibility to provide more efficient heat dissipation from the large GaN HEMT chips to an AlN package substrate heat sink with no constraint in the alignment between the HEMT cells and the thermal conduction bumps. Steady-state thermal simulations were conducted to study the channel temperatures of GaN HEMTs with various Au bump patterns at different levels of current and voltage loadings, and the results were compared with the conventional face-up GaN die bonding on an AlN package substrate. The simulations were started from a single finger isolated HEMT cell and then extended to multiple fingers HEMT cells (total gate width > 40 mm) to investigate the "thermal cross-talk" effect from neighboring devices. Thermal analysis of the GaN HEMT under pulse operation was also performed to better reflect the actual conditions in power conversion or pulsed laser driver applications. Our analysis provides a combinational assessment of power GaN HEMT dies under a working condition (e.g., 1MHz, 25% duty cycle) with different flip chip packaging schemes. The analysis indicated that the channel temperature rise (∆T) of a HEMT cell in operation can be reduced by 44~46% by changing from face-up die bonding to a flip-chip bonding scheme with an optimized bump pattern design.

4.
Micromachines (Basel) ; 13(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36557439

RESUMO

Substrate voltage (VSUB) effects on GaN-on-Si high electron mobility transistors (HEMTs) power application performance with superlattice transition layer structure was investigated. The 2DEG conductivity and buffer stack charge redistribution can be affected by neutral/ionized donor and acceptor traps. As the donor/acceptor traps are excessively ionized or de-ionized by applying VSUB, the depletion region between the unintentionally doped (UID)/Carbon-doped (C-doped) GaN layer may exhibit a behavior similar to the p-n junction. An applied negative VSUB increases the concentration of both the ionized donor and acceptor traps, which increases the breakdown voltage (BV) by alleviating the non-uniform distribution of the vertical electric field. On the other hand, an applied positive VSUB causes the energy band bending flattener to refill the ionized traps and slightly improves the dynamic Ron degradation. Moreover, the amount of electrons injected into the buffer stack layer from the front side (2DEG channel/Ohmic contact) and the back side (AlN nucleation layer/superlattice transition layer) are asymmetric. Therefore, different VSUB can affect the conductivity of 2DEG through the field effect, buffer trapping effect, and charge redistribution, which can change the electrical performance of the device.

5.
Micromachines (Basel) ; 12(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683210

RESUMO

GaN HEMT has attracted a lot of attention in recent years owing to its wide applications from the high-frequency power amplifier to the high voltage devices used in power electronic systems. Development of GaN HEMT on Si-based substrate is currently the main focus of the industry to reduce the cost as well as to integrate GaN with Si-based components. However, the direct growth of GaN on Si has the challenge of high defect density that compromises the performance, reliability, and yield. Defects are typically nucleated at the GaN/Si heterointerface due to both lattice and thermal mismatches between GaN and Si. In this article, we will review the current status of GaN on Si in terms of epitaxy and device performances in high frequency and high-power applications. Recently, different substrate structures including silicon-on-insulator (SOI) and engineered poly-AlN (QST®) are introduced to enhance the epitaxy quality by reducing the mismatches. We will discuss the development and potential benefit of these novel substrates. Moreover, SOI may provide a path to enable the integration of GaN with Si CMOS. Finally, the recent development of 3D hetero-integration technology to combine GaN technology and CMOS is also illustrated.

6.
Micromachines (Basel) ; 12(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201620

RESUMO

GaN has been widely used to develop devices for high-power and high-frequency applications owing to its higher breakdown voltage and high electron saturation velocity. The GaN HEMT radio frequency (RF) power amplifier is the first commercialized product which is fabricated using the conventional Au-based III-V device manufacturing process. In recent years, owing to the increased applications in power electronics, and expanded applications in RF and millimeter-wave (mmW) power amplifiers for 5G mobile communications, the development of high-volume production techniques derived from CMOS technology for GaN electronic devices has become highly demanded. In this article, we will review the history and principles of each unit process for conventional HEMT technology with Au-based metallization schemes, including epitaxy, ohmic contact, and Schottky metal gate technology. The evolution and status of CMOS-compatible Au-less process technology will then be described and discussed. In particular, novel process techniques such as regrown ohmic layers and metal-insulator-semiconductor (MIS) gates are illustrated. New enhancement-mode device technology based on the p-GaN gate is also reviewed. The vertical GaN device is a new direction of development for devices used in high-power applications, and we will also highlight the key features of such kind of device technology.

7.
Arch Biochem Biophys ; 506(1): 66-72, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21056540

RESUMO

[(3)H]8-OH-DPAT is a selective ligand for labeling 5-HT(1A) receptor sites. In competition binding experiments, we found that classic biogenic amine transporter inhibitors displaced [(3)H]8-OH-DPAT binding at its high-affinity binding sites in HeLaS3 cells. [(125)I]RTI-55 and [(3)H]paroxetine are known to specifically label amine transporter sites, and this was observed in our cells. Displacement studies showed that 8-OH-DPAT displayed affinity in a dose-dependent manner for the labeled amine transporter sites. These data suggest that [(3)H]8-OH-DPAT binds to amine uptake sites in HeLaS3 cells. A variety of drugs targeting different classes of receptors did not significantly affect [(3)H]8-OH-DPAT binding. Moreover, we determined the specific binding effects of various serotonergic ligands (i.e. [(125)I]cyanopindolol, [(3)H]ketanserin/[(3)H]mesulergine, [(3)H]GR-65630, [(3)H]GR-113808 and [(3)H]LSD) that specifically labeled 5-HT(1), 5-HT(2), 5-HT(3), 5-HT(4) and 5-HT(5-7) receptors, respectively. It is suggested that HeLaS3 cells contain distinct types of the related to 5-HT receptor recognition binding sites. These observations could help elucidate the relevant characteristics of different types of 5-HT receptors and 5-HT membrane transporters in tumor cells and their role in tumorigenesis.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/metabolismo , Receptores de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Ligação Competitiva , Aminas Biogênicas/metabolismo , Cocaína/análogos & derivados , Cocaína/metabolismo , Fluoxetina/metabolismo , Células HeLa , Humanos , Cinética , Ligantes , Paroxetina/metabolismo , Ensaio Radioligante , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Aminas Biogênicas/antagonistas & inibidores
8.
Arch Biochem Biophys ; 495(1): 14-20, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20018167

RESUMO

Some G protein-coupled receptors (GPCRs) have functional links to cancer biology, yet the manifestation of GPCRs in tumor types is little studied to date. Using a battery of radioligand binding assays, we sought to characterize GPCR recognition binding sites on HeLaS3 tumor cells. High levels of binding of the selective serotonin 5-HT(1A) receptor agonist [3H]8-OH-DPAT were observed in these cells. Saturation and homologous competition experiments indicated that [3H]8-OH-DPAT bound different populations of high- and low-affinity sites. In competition experiments, several serotonergic compounds displaced [3H]8-OH-DPAT binding with low potency from its high-affinity binding sites, suggesting that low-affinity binding is the predominant mode of binding. A variety of drugs targeting different classes of receptors did not affect [3H]8-OH-DPAT binding. These observations may help elucidate the pathophysiological and functional relevance of 5-HT receptors in tumor cells and link GPCRs and tumorigenic mechanisms to pharmacological and chemotherapeutic paradigms.


Assuntos
8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Ensaio Radioligante , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Ligação Competitiva , Dimetil Sulfóxido/metabolismo , Células HeLa , Humanos , Receptores Acoplados a Proteínas G/metabolismo
9.
J Pharmacol Sci ; 95(3): 311-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15272206

RESUMO

A radioligand binding assay for the HERG (human ether-a-go-go-related gene) K(+) channel was developed to identify compounds which may have inhibitory activity and potential cardiotoxicity. Pharmacological characterization of the [(3)H]astemizole binding assay for HERG K(+) channels was performed using HERG-expressing HEK293 cells. The assay conditions employed yielded 90% specific binding using 10 microg/well of membrane protein with 1.5 nM of [(3)H]astemizole at 25 degrees C. The K(d) and B(max) values were 5.91 +/- 0.81 nM and 6.36 +/- 0.26 pmol/mg, respectively. The intraassay and interassay variations were 11.4% and 14.9%, respectively. Binding affinities for 32 reference compounds (including dofetilide, cisapride, and terfenadine) with diverse structures demonstrated a similar potency rank order for HERG inhibition to that reported in the literature. Moreover, the [(3)H]astemizole binding data demonstrated a rank order of affinity that was highly correlated to that of inhibitory potency in the electrophysiological studies for HERG in HEK293 (r(SP) = 0.91, P<0.05). In conclusion, the [(3)H]astemizole binding assay is rapid and capable of detecting HERG inhibitors.


Assuntos
Astemizol/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Astemizol/metabolismo , Sítios de Ligação , Ligação Competitiva , Bloqueadores dos Canais de Cálcio/metabolismo , Linhagem Celular , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Ligantes , Técnicas de Patch-Clamp , Ensaio Radioligante , Fatores de Tempo , Transfecção , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...