Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Acta Cardiol Sin ; 40(4): 373-382, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39045379

RESUMO

Background: Ivabradine is approved for heart rate reduction in patients with stable symptomatic heart failure (HF). The United States Food and Drug Administration and Taiwan Central Health Insurance Agency approved the use of ivabradine for patients with chronic stable HF with sinus rhythm, but it has not yet been approved for patients with acute decompensated HF or with atrial fibrillation (AF). Objectives: To investigate whether short-term ivabradine use is feasible in critically ill patients with AF and rapid ventricular response (RVR). Methods: This study retrospectively analyzed 23 patients admitted to an intensive care unit with acute HF and AF-RVR who received ivabradine. All patients initially received a slow IV of amiodarone. Other medications for HF were prescribed according to current HF guidelines. The time taken for ivabradine to reduce HR to 80 beats per minute, referred to as "Time to 80," was measured in each patient. Results: Overall, 69.6 % (16/23) of the patients had New York Heart Association functional class IV HF. In addition, 60.9% (14/23) of the patients required endotracheal intubation and ventilatory support, with more than half receiving vasopressor treatment to manage hypotension. Five patients died during the study period. The surviving patients had a significantly shorter "Time to 80" compared to those who did not survive (p = 0.037). Conclusions: Adding ivabradine to standard treatment might be feasible for critically ill patients with AF and tachycardia. The finding that surviving patients had a shorter "Time to 80" duration than those who did not survive may have clinical implications. However, further investigations are needed to assess its clinical utility.

2.
World J Emerg Surg ; 19(1): 25, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926694

RESUMO

BACKGROUND: Monitoring Intraabdominal Pressure (IAP) is essential in critical care, as elevated IAP can lead to severe complications, including Abdominal Compartment Syndrome (ACS). Advances in technology, such as digital capsules, have opened new avenues for measuring IAP non-invasively. This study assesses the feasibility and effectiveness of using a capsular device for IAP measurement in an animal model. METHOD: In our controlled experiment, we anesthetized pigs and simulated elevated IAP conditions by infusing CO2 into the peritoneal cavity. We compared IAP measurements obtained from three different methods: an intravesical catheter (IAPivp), a capsular device (IAPdot), and a direct peritoneal catheter (IAPdir). The data from these methods were analyzed to evaluate agreement and accuracy. RESULTS: The capsular sensor (IAPdot) provided continuous and accurate detection of IAP over 144 h, with a total of 53,065,487 measurement triplets recorded. The correlation coefficient (R²) between IAPdot and IAPdir was excellent at 0.9241, demonstrating high agreement. Similarly, IAPivp and IAPdir showed strong correlation with an R² of 0.9168. CONCLUSION: The use of capsular sensors for continuous and accurate assessment of IAP marks a significant advancement in the field of critical care monitoring. The high correlation between measurements from different locations and methods underscores the potential of capsular devices to transform clinical practices by providing reliable, non-invasive IAP monitoring.


Assuntos
Estudos de Viabilidade , Hipertensão Intra-Abdominal , Animais , Suínos , Hipertensão Intra-Abdominal/diagnóstico , Hipertensão Intra-Abdominal/fisiopatologia , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Pressão , Cavidade Abdominal/fisiologia , Cavidade Abdominal/fisiopatologia , Reprodutibilidade dos Testes , Modelos Animais de Doenças
3.
Angew Chem Int Ed Engl ; 63(32): e202407702, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38751355

RESUMO

The current bottleneck in the development of efficient photocatalysts for hydrogen evolution is the limited availability of high-performance acceptor units. Over the past nine years, dibenzo[b,d]thiophene sulfone (DBS) has been the preferred choice for the acceptor unit. Despite extensive exploration of alternative structures as potential replacements for DBS, a superior substitute remains elusive. In this study, a symmetry-breaking strategy was employed on DBS to develop a novel acceptor unit, BBTT-1SO. The asymmetric structure of BBTT-1SO proved beneficial for increasing multiple moment and polarizability. BBTT-1SO-containing polymers showed higher efficiencies for hydrogen evolution than their DBS-containing counterparts by up to 166 %. PBBTT-1SO exhibited an excellent hydrogen evolution rate (HER) of 222.03 mmol g-1 h-1 and an apparent quantum yield of 27.5 % at 500 nm. Transient spectroscopic studies indicated that the BBTT-1SO-based polymers facilitated electron polaron formation, which explains their superior HERs. PBBTT-1SO also showed 14 % higher HER in natural seawater splitting than that in deionized water splitting. Molecular dynamics simulations highlighted the enhanced water-PBBTT-1SO polymer interactions in salt-containing solutions. This study presents a pioneering example of a substitute acceptor unit for DBS in the construction of high-performance photocatalysts for hydrogen evolution.

4.
Sci Rep ; 14(1): 8151, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589538

RESUMO

This study demonstrates a novel use of the U-Net convolutional neural network (CNN) for modeling pixel-based electrostatic potential distributions in GaN metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs) with various gate and source field plate designs and drain voltages. The pixel-based images of the potential distribution are successfully modeled from the developed U-Net CNN with an error of less than 1% error relative to a TCAD simulated reference of a 500-V electrostatic potential distribution in the AlGaN/GaN interface. Furthermore, the modeling time of potential distributions by U-Net takes about 80 ms. Therefore, the U-Net CNN is a promising approach to efficiently model the pixel-based distributions characteristics in GaN power devices.

5.
Trauma Surg Acute Care Open ; 9(1): e001300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646620

RESUMO

Purpose: To develop a rib and clavicle fracture detection model for chest radiographs in trauma patients using a deep learning (DL) algorithm. Materials and methods: We retrospectively collected 56 145 chest X-rays (CXRs) from trauma patients in a trauma center between August 2008 and December 2016. A rib/clavicle fracture detection DL algorithm was trained using this data set with 991 (1.8%) images labeled by experts with fracture site locations. The algorithm was tested on independently collected 300 CXRs in 2017. An external test set was also collected from hospitalized trauma patients in a regional hospital for evaluation. The receiver operating characteristic curve with area under the curve (AUC), accuracy, sensitivity, specificity, precision, and negative predictive value of the model on each test set was evaluated. The prediction probability on the images was visualized as heatmaps. Results: The trained DL model achieved an AUC of 0.912 (95% CI 87.8 to 94.7) on the independent test set. The accuracy, sensitivity, and specificity on the given cut-off value are 83.7, 86.8, and 80.4, respectively. On the external test set, the model had a sensitivity of 88.0 and an accuracy of 72.5. While the model exhibited a slight decrease in accuracy on the external test set, it maintained its sensitivity in detecting fractures. Conclusion: The algorithm detects rib and clavicle fractures concomitantly in the CXR of trauma patients with high accuracy in locating lesions through heatmap visualization.

6.
Phys Med Biol ; 69(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38452385

RESUMO

Objective. To combat the motion artifacts present in traditional 4D-CBCT reconstruction, an iterative technique known as the motion-compensated simultaneous algebraic reconstruction technique (MC-SART) was previously developed. MC-SART employs a 4D-CBCT reconstruction to obtain an initial model, which suffers from a lack of sufficient projections in each bin. The purpose of this study is to demonstrate the feasibility of introducing a motion model acquired during CT simulation to MC-SART, coined model-based CBCT (MB-CBCT).Approach. For each of 5 patients, we acquired 5DCTs during simulation and pre-treatment CBCTs with a simultaneous breathing surrogate. We cross-calibrated the 5DCT and CBCT breathing waveforms by matching the diaphragms and employed the 5DCT motion model parameters for MC-SART. We introduced the Amplitude Reassignment Motion Modeling technique, which measures the ability of the model to control diaphragm sharpness by reassigning projection amplitudes with varying resolution. We evaluated the sharpness of tumors and compared them between MB-CBCT and 4D-CBCT. We quantified sharpness by fitting an error function across anatomical boundaries. Furthermore, we compared our MB-CBCT approach to the traditional MC-SART approach. We evaluated MB-CBCT's robustness over time by reconstructing multiple fractions for each patient and measuring consistency in tumor centroid locations between 4D-CBCT and MB-CBCT.Main results. We found that the diaphragm sharpness rose consistently with increasing amplitude resolution for 4/5 patients. We observed consistently high image quality across multiple fractions, and observed stable tumor centroids with an average 0.74 ± 0.31 mm difference between the 4D-CBCT and MB-CBCT. Overall, vast improvements over 3D-CBCT and 4D-CBCT were demonstrated by our MB-CBCT technique in terms of both diaphragm sharpness and overall image quality.Significance. This work is an important extension of the MC-SART technique. We demonstrated the ability ofa priori5DCT models to provide motion compensation for CBCT reconstruction. We showed improvements in image quality over both 4D-CBCT and the traditional MC-SART approach.


Assuntos
Tomografia Computadorizada Quadridimensional , Neoplasias Pulmonares , Humanos , Projetos Piloto , Tomografia Computadorizada Quadridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Imagens de Fantasmas , Algoritmos
7.
ACS Sens ; 9(2): 638-645, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350035

RESUMO

A demonstration of an off-chip capacitance array sensor with a limit of detection of 1 µM trimethylamine N-oxide (TMAO) to diagnose a chronic metabolism disease in urine is presented. The improved Cole-Cole model is employed to determine the parameters of R_catalyzed, C_catalyzed, and Rp_catalyzed, enabling the prediction of the catalytic resistance of enzyme, reduction effects of the analyte, and characterize the small signal alternating current properties of ionic strength caused by catalysis. Based on the standard solutions, we investigate the effects of pixel geometry parameters, driving electrode width, and sensing electrode width on the electrical field change of the off-chip capacitance sensor; the proposed off-chip sensor with readout system-on-chip exhibits a high sensitivity of 21 analog-to-digital converter counts/µM TMAO (or 2.5 mV/µM TMAO), response time of 1 s, repetition of 98.9%, and drift over time of 0.5 mV. The proposed off-chip sensor effectively discriminates TMAO in a phosphate-buffered saline solution based on minute changes in capacitance induced by the TorA enzyme, resulting in a discernible 2.15% distinction. These measurements have been successfully corroborated using the conventional cyclic voltammetry method, demonstrating a mere 0.024% variance. The off-chip sensor is crafted with a specific focus on detecting TMAO, achieved by excluding any reduction reactions between the TMAO-specific enzyme TorA and the compounds creatine and creatinine present in urine. This deliberate omission ensures that the sensor's attention remains solely on TMAO, thereby enhancing its precision in achieving accurate and reliable TMAO detection.


Assuntos
Líquidos Corporais , Doenças Cardiovasculares , Trombose , Humanos , Metilaminas , Líquidos Corporais/metabolismo
8.
Small ; 20(6): e2304743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803930

RESUMO

Converting solar energy into hydrogen energy using conjugated polymers (CP) is a promising solution to the energy crisis. Improving water solubility plays one of the critical factors in enhancing the hydrogen evolution rate (HER) of CP photocatalysts. In this study, a novel concept of incorporating hydrophilic side chains to connect the backbones of CPs to improve their HER is proposed. This concept is realized through the polymerization of carbazole units bridged with octane, ethylene glycol, and penta-(ethylene glycol) to form three new side-chain-braided (SCB) CPs: PCz2S-OCt, PCz2S-EG, and PCz2S-PEG. Verified through transient absorption spectra, the enhanced capability of PCz2S-PEG for ultrafast electron transfer and reduced recombination effects has been demonstrated. Small- and wide-angle X-ray scattering (SAXS/WAXS) analyses reveal that these three SCB-CPs form cross-linking networks with different mass fractal dimensions (f) in aqueous solution. With the lowest f value of 2.64 and improved water/polymer interfaces, PCz2S-PEG demonstrates the best HER, reaching up to 126.9 µmol h-1 in pure water-based photocatalytic solution. Moreover, PCz2S-PEG exhibits comparable performance in seawater-based photocatalytic solution under natural sunlight. In situ SAXS analysis further reveals nucleation-dominated generation of hydrogen nanoclusters with a size of ≈1.5 nm in the HER of PCz2S-PEG under light illumination.

9.
Bioengineering (Basel) ; 10(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370666

RESUMO

(1) Background: Design thinking is a problem-solving approach that has been applied in various sectors, including healthcare and medical education. While deep learning (DL) algorithms can assist in clinical practice, integrating them into clinical scenarios can be challenging. This study aimed to use design thinking steps to develop a DL algorithm that accelerates deployment in clinical practice and improves its performance to meet clinical requirements. (2) Methods: We applied the design thinking process to interview clinical doctors and gain insights to develop and modify the DL algorithm to meet clinical scenarios. We also compared the DL performance of the algorithm before and after the integration of design thinking. (3) Results: After empathizing with clinical doctors and defining their needs, we identified the unmet need of five trauma surgeons as "how to reduce the misdiagnosis of femoral fracture by pelvic plain film (PXR) at initial emergency visiting". We collected 4235 PXRs from our hospital, of which 2146 had a hip fracture (51%) from 2008 to 2016. We developed hip fracture DL detection models based on the Xception convolutional neural network by using these images. By incorporating design thinking, we improved the diagnostic accuracy from 0.91 (0.84-0.96) to 0.95 (0.93-0.97), the sensitivity from 0.97 (0.89-1.00) to 0.97 (0.94-0.99), and the specificity from 0.84 (0.71-0.93) to 0.93(0.990-0.97). (4) Conclusions: In summary, this study demonstrates that design thinking can ensure that DL solutions developed for trauma care are user-centered and meet the needs of patients and healthcare providers.

10.
Small ; 19(42): e2302682, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322304

RESUMO

Conjugated polymers (CPs) have recently gained increasing attention as photocatalysts for sunlight-driven hydrogen evolution. However, they suffer from insufficient electron output sites and poor solubility in organic solvents, severely limiting their photocatalytic performance and applicability. Herein, solution-processable all-acceptor (A1 -A2 )-type CPs based on sulfide-oxidized ladder-type heteroarene are synthesized. A1 -A2 -type CPs showed upsurging efficiency improvements by two to three orders of magnitude, compared to their donor-acceptor -type CP counterparts. Furthermore, by seawater splitting, PBDTTTSOS exhibited an apparent quantum yield of 18.9% to 14.8% at 500 to 550 nm. More importantly, PBDTTTSOS achieved an excellent hydrogen evolution rate of 35.7 mmol h-1  g-1 and 150.7 mmol h-1  m-2 in the thin-film state, which is among the highest efficiencies in thin film polymer photocatalysts to date. This work provides a novel strategy for designing polymer photocatalysts with high efficiency and broad applicability.

11.
Bioengineering (Basel) ; 10(4)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37106645

RESUMO

(1) Background: Hip degenerative disorder is a common geriatric disease is the main causes to lead to total hip replacement (THR). The surgical timing of THR is crucial for post-operative recovery. Deep learning (DL) algorithms can be used to detect anomalies in medical images and predict the need for THR. The real world data (RWD) were used to validate the artificial intelligence and DL algorithm in medicine but there was no previous study to prove its function in THR prediction. (2) Methods: We designed a sequential two-stage hip replacement prediction deep learning algorithm to identify the possibility of THR in three months of hip joints by plain pelvic radiography (PXR). We also collected RWD to validate the performance of this algorithm. (3) Results: The RWD totally included 3766 PXRs from 2018 to 2019. The overall accuracy of the algorithm was 0.9633; sensitivity was 0.9450; specificity was 1.000 and the precision was 1.000. The negative predictive value was 0.9009, the false negative rate was 0.0550, and the F1 score was 0.9717. The area under curve was 0.972 with 95% confidence interval from 0.953 to 0.987. (4) Conclusions: In summary, this DL algorithm can provide an accurate and reliable method for detecting hip degeneration and predicting the need for further THR. RWD offered an alternative support of the algorithm and validated its function to save time and cost.

12.
Phys Chem Chem Phys ; 25(12): 8734-8742, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36896849

RESUMO

Due to the existence of a small polaron, the intrinsic electronic conductivity of olivine-structured LiFePO4 is quite low, limiting its performance as a cathode material for lithium-ion batteries (LIBs). Previous studies have mainly focused on improving intrinsic conductivity through Fe-site doping while P-site or O-site doping has rarely been reported. Herein, we studied the formation and dynamics of the small electron polaron in FeP1-αXαO4 and FePO4-ßZß by employing the density functional theory with the on-site Hubbard correction terms (DFT+U) and Kinetic Monte Carlo (KMC) simulation, where X and Z indicate the doping elements (X = S, Se, As, Si, V; Z = S, F, Cl), and α and ß indicate the light doping at the P position (α = 0.0625) and O position (ß = 0.015625), respectively. We confirmed the small electron polaron formation in pristine FePO4 and its doped systems, and the polaron hopping rates for all systems were calculated according to the Marcus-Emin-Holstein-Austin-Mott (MEHAM) theory. We found that the hopping process is adiabatic for most cases with the defects breaking the original symmetry. Based on the KMC simulation results, we found that the doping of S at the P site changes the polaron's motion mode, which is expected to increase the mobility and intrinsic electronic conductivity. This study attempts to provide theoretical guidance to improve the electronic conductivity of LiFePO4-like cathode materials with better rate performance.

13.
Open Med (Wars) ; 18(1): 20230668, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36941991

RESUMO

Osteoarthritis (OA) is a type of common degenerative joint disorder, in which adipose mesenchymal stem cells (ADSCs) and the secreted exosomes play an important role. The purpose of this study was to investigate the role and mechanism of exosomes derived from ADSCs (ADSC-exos) in OA. The gradient of IL-1ß concentration was designed to construct the articular chondrocyte model of arthritic mice. The expression of miR-93-5p and ADAMTS9 in articular chondrocytes was detected by reverse transcription quantitative polymerase chain reaction. Dual luciferase reporter gene assay was performed to verify the interaction between them. Monodansylcadaverine staining was used to visualize the autophagosome formation and cell apoptosis was analyzed by flow cytometry. ADSC-exos were authenticated by transmission electron microscope and western blot assay. miR-93-5p was found to be downregulated in IL-1ß-treated articular chondrocytes compared with OA cartilage while ADAMTS9 was upregulated, which was identified as a direct target gene of miR-93-5p. Silencing of ADAMTS9 attenuated the effects of miR-93-5p. Exosomal miR-93-5p can reduce the release of inflammatory factors in mouse arthritis cell models. This study first described the mechanism under that ADSC-exos inhibited inflammation and alleviated OA through the innovative targets miR-93-5p/ADAMTS9 signal axis. This provided a new method for the treatment of OA.

14.
Small ; 19(26): e2300046, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929623

RESUMO

The unique properties of self-healing materials hold great potential in battery systems, which can exhibit excellent deformability and return to its original shape after cycling. Herein, a Cu3 BiS3 anode material with self-healing mechanisms is proposed for use in ultrastable potassium-ion battery (PIB) and potassium-ion hybrid capacitor (PIHC). Different from the binder design, Cu3 BiS3 anode can exhibit the dual advantages of phase and morphological reversibility, further remaining original property after potassiation/depotassiation and exhibiting ultrastable cycling performance. The reversible electrochemical reconstruction during the continuous charge/discharge processes is beneficial to maintain the structure and function of the material. Furthermore, the conversion reactions during the charge and discharge process produce two advantages: i) suppressing the shuttle effect due to the formation of the heterostructure interface between Cu (111) and Bi (012); ii) Cu can avoid the agglomeration of Bi nanoparticles (NPs), further improving the electrochemical performance and long-cycle stability of the Cu3 BiS3 electrode. As a result, the Cu3 BiS3 electrode not only exhibits a long cycle life in half cells, but also 2000 cycles and 12000 cycles in PIB and PIHC full cells, respectively.

15.
Micromachines (Basel) ; 14(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984926

RESUMO

In this work, we demonstrated the thermal analysis of different flip-chip bonding designs for high power GaN HEMT developed for power electronics applications, such as power converters or photonic driver applications, with large gate periphery and chip size, as well as an Au metal heat-spreading layer deposited on top of a planarized dielectric/passivation layer above the active region. The Au bump patterns can be designed with high flexibility to provide more efficient heat dissipation from the large GaN HEMT chips to an AlN package substrate heat sink with no constraint in the alignment between the HEMT cells and the thermal conduction bumps. Steady-state thermal simulations were conducted to study the channel temperatures of GaN HEMTs with various Au bump patterns at different levels of current and voltage loadings, and the results were compared with the conventional face-up GaN die bonding on an AlN package substrate. The simulations were started from a single finger isolated HEMT cell and then extended to multiple fingers HEMT cells (total gate width > 40 mm) to investigate the "thermal cross-talk" effect from neighboring devices. Thermal analysis of the GaN HEMT under pulse operation was also performed to better reflect the actual conditions in power conversion or pulsed laser driver applications. Our analysis provides a combinational assessment of power GaN HEMT dies under a working condition (e.g., 1MHz, 25% duty cycle) with different flip chip packaging schemes. The analysis indicated that the channel temperature rise (∆T) of a HEMT cell in operation can be reduced by 44~46% by changing from face-up die bonding to a flip-chip bonding scheme with an optimized bump pattern design.

16.
Sensors (Basel) ; 22(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36433247

RESUMO

MEMS based 3D double stacked tower pixel biosensor 10 × 10 array with integration of readout circuit for detection of saliva pH ion is demonstrated. The pixel biosensor comprised a driving electrode, sensing electrode and double stack tower pixel structure. The sensitivity of double stacked tower biosensor can be auxiliary enhanced by proposed lower-jitter low dropout regulator circuit and dual offset cancellation comparator. The double stacked tower sensor is fabricated by MEMS backend-of-line CMOS process, it is compatible with CMOS frontend readout circuits and integrated as a system-on-chip (SoC). The double stacked tower pixel by MEMS process is to obtain a larger volume ratio of charge groups in a pixel of biosensor to enhance the sensitivity and linearity for ion detection. With the double stacked tower structure in biosensor, the sensitivity is improved by 31% than that of single tower structure proved by simulation. A wide-range linearity from pH 2.0 to pH 8.3, high sensitivity of -21 ADC counts/pH (or 212 mV/pH), response time of 5 s, repetition of 98.9%, and drift over time of 0.5 mV are achieved. Furthermore, the proposed biosensor was performed to confirm the artificial saliva from healthy gingiva, chronic gingivitis and chronic periodontitis, the measured ADC counts from proposed biosensor SoC was in consistent of that measured cyclic voltametric (CV) method very well. The proposed 3D double stack tower biosensor and readout circuit can be further integrated with internet-of-thing (IoT) device and NFC for data transmission for continuous pH sensing to facilitate the chronic gingiva disease health care at home.


Assuntos
Técnicas Biossensoriais , Periodontite Crônica , Humanos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Biomarcadores
17.
ACS Omega ; 7(42): 37359-37368, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312365

RESUMO

Perovskite solar cells (PeSCs) were fabricated by using Cs x FA1-x PbI3-x Cl x as the photoactive layer, and the effects of different proportions of cesium chloride (CsCl)/formamidinium iodide on perovskites were investigated. Cesium (Cs) can stabilize the α phase of the perovskite, while chlorine (Cl) can increase the size and crystallinity of perovskite crystals and reduce non-radiative cladding, thereby improving the performance of the overall device. The maximum power conversion efficiency (PCE) measured for Cs0.2FA0.8PbI2.8Cl0.2-based PeSCs was 18.9%. To further improve the photovoltaic characteristics of PeSCs, Cs0.2FA0.8PbI2.8Cl0.2-based PeSCs were introduced into different concentrations of phenethylammonium iodide (PEAI) to modify the interface between the NiO x hole transport layer (HTL) and the perovskite photoactive layer, which can simultaneously promote excellent crystallinity of the perovskite layer and passivated interfacial defects, reducing recombination near the perovskite/HTL interface in PeSCs, thereby increasing the efficiency of the device. Compared with the control Cs0.2FA0.8PbI2.8Cl0.2-based PeSC, the PCE of PeSC with the PEAI (10 mg/mL)-modified NiO x /perovskite interface increased significantly from 18.9 to 20.2%.

18.
Nat Commun ; 13(1): 5460, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115857

RESUMO

Photocatalytic water splitting is attracting considerable interest because it enables the conversion of solar energy into hydrogen for use as a zero-emission fuel or chemical feedstock. Herein, we present a universal approach for inserting hydrophilic non-conjugated segments into the main-chain of conjugated polymers to produce a series of discontinuously conjugated polymer photocatalysts. Water can effectively be brought into the interior through these hydrophilic non-conjugated segments, resulting in effective water/polymer interfaces inside the bulk discontinuously conjugated polymers in both thin-film and solution. Discontinuously conjugated polymer with 10 mol% hexaethylene glycol-based hydrophilic segments achieves an apparent quantum yield of 17.82% under 460 nm monochromatic light irradiation in solution and a hydrogen evolution rate of 16.8 mmol m-2 h-1 in thin-film. Molecular dynamics simulations show a trend similar to that in experiments, corroborating that main-chain engineering increases the possibility of a water/polymer interaction. By introducing non-conjugated hydrophilic segments, the effective conjugation length is not altered, allowing discontinuously conjugated polymers to remain efficient photocatalysis.

19.
Anatol J Cardiol ; 26(11): 802-809, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35949134

RESUMO

BACKGROUND: Previous studies have shown that transcatheter aortic valve implantation is the best alternative therapy to surgical aortic valve replacement in high-risk surgical patients with aortic stenosis. However, it is not clear whether transcatheter aortic valve implantation can be utilized in low-risk surgical patients with aortic stenosis. This studyaimed to evaluate the safety and efficacy of transcatheter aortic valve implantation in low-risk patients. METHODS: From the outset of our initiative until April 2022, PubMed, EMBASE, and the Cochrane database were thoroughly searched, yielding the selection of 3 randomized controlled trials including 2644 patients with aortic stenosis, to assess outcome measures at distinct follow-up time. RESULTS: The mean Society of Thoracic Surgeons Predicted Risk of Mortality score of patients was 2.2. At the 30-day and 1-year follow-up, transcatheter aortic valve implan- tation was associated with a lower incidence of all-cause mortality, cardiovascular mor- tality, acute kidney injury (stage 2 or 3), life-threatening or significant bleeding, and new atrial fibrillation but an increased risk of permanent pacemaker implantation. At the 2-year follow-up, transcatheter aortic valve implantation only had an advantage in new atrial fibrillation (relative risk, 0.27; 95% CI, 0.14-0.51; P < .0001), with no significant differ- ence in all-cause mortality or cardiovascular mortality. CONCLUSIONS: For low-risk surgical patients with aortic stenosis, compared to surgical aortic valve replacement, transcatheter aortic valve implantation was associated with lower all-cause mortality at 30-day follow-up and lower cardiovascular mortality at 1-year follow-up. Except for the advantages in new atrial fibrillation, transcatheter aor- tic valve implantation had no significant impact on mortality at 2-year follow-up.


Assuntos
Estenose da Valva Aórtica , Substituição da Valva Aórtica Transcateter , Humanos , Valva Aórtica/cirurgia , Estenose da Valva Aórtica/cirurgia , Fibrilação Atrial/cirurgia , Seguimentos , Risco , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
20.
Development ; 149(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35899600

RESUMO

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2. We demonstrated that border cell clusters containing mutant CTPsyn cells suppressed migration. CTPsyn was co-enriched with Actin at the leading edge of the Drosophila border cell cluster where PIP2 was enriched, and this enrichment depended on the CTPsyn activity. Genetic interactions of border cell migration were found between CTPsyn mutant and genes in PI biosynthesis. The CTPsyn reduction resulted in loss of the asymmetric activity of endocytosis recycling. Also, genetic interactions were revealed between components of the exocyst complex and CTPsyn mutant, indicating that CTPsyn activity regulates the PIP2-related asymmetrical exocytosis activity. Furthermore, CTPsyn activity is essential for RTK-polarized distribution in the border cell cluster. We propose a model in which CTPsyn activity is required for the asymmetrical generation of PIP2 to enrich RTK signaling through endocytic recycling in collective cell migration.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Carbono-Nitrogênio Ligases , Movimento Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA