Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3782, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710678

RESUMO

Thermoelectrics have great potential for use in waste heat recovery to improve energy utilization. Moreover, serving as a solid-state heat pump, they have found practical application in cooling electronic products. Nevertheless, the scarcity of commercial Bi2Te3 raw materials has impeded the sustainable and widespread application of thermoelectric technology. In this study, we developed a low-cost and earth-abundant PbS compound with impressive thermoelectric performance. The optimized n-type PbS material achieved a record-high room temperature ZT of 0.64 in this system. Additionally, the first thermoelectric cooling device based on n-type PbS was fabricated, which exhibits a remarkable cooling temperature difference of ~36.9 K at room temperature. Meanwhile, the power generation efficiency of a single-leg device employing our n-type PbS material reaches ~8%, showing significant potential in harvesting waste heat into valuable electrical power. This study demonstrates the feasibility of sustainable n-type PbS as a viable alternative to commercial Bi2Te3, thereby extending the application of thermoelectrics.

2.
Sci Bull (Beijing) ; 69(11): 1728-1737, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688741

RESUMO

Thermoelectric materials have a wide range of application because they can be directly used in refrigeration and power generation. And the Bi2Te3 stand out because of its excellent thermoelectric performance and are used in commercial thermoelectric devices. However, n-type Bi2Te3 has seriously hindered the development of Bi2Te3-based thermoelectric devices due to its weak mechanical properties and inferior thermoelectric performance. Therefore, it is urgent to develop a high-performance n-type Bi2Te3 polycrystalline. In this work, we employed interstitial Cu and the hot deformation process to optimize the thermoelectric properties of Bi2Te2.7Se0.3, and a high-performance thermoelectric module was fabricated based on this material. Our combined theoretical and experimental effort indicates that the interstitial Cu reduce the defect density in the matrix and suppresses the donor-like effect, leading to a lattice plainification effect in the material. In addition, the two-step hot deformation process significantly improves the preferred orientation of the material and boosts the mobility. As a result, a maximum ZT of 1.27 at 373 K and a remarkable high ZTave of 1.22 across the temperature range of 300-425 K are obtained. The thermoelectric generator (TEG, 7-pair) and thermoelectric cooling (TEC, 127-pair) modules were fabricated with our n-type textured Cu0.01Bi2Te2.7Se0.3 coupled with commercial p-type Bi2Te3. The TEC module demonstrates superior cooling efficiency compared with the commercial Bi2Te3 device, achieving a ΔT of 65 and 83.4 K when the hot end temperature at 300 and 350 K, respectively. In addition, the TEG module attains an impressive conversion efficiency of 6.5% at a ΔT of 225 K, which is almost the highest value among the reported Bi2Te3-based TEG modules.

3.
Small ; : e2400866, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639306

RESUMO

The scarcity of Te hampers the widespread use of Bi2Te3-based thermoelectric modules. Here, the thermoelectric module potential of PbSe is investigated by improving its carrier mobility. Initially, large PbSe crystals are grown with the temperature gradient method to mitigate grain boundary effects on carrier transport. Subsequently, light doping with <1mole‰ halogens (Cl/Br/I) increases room-temperature carrier mobility to ~1600 cm2 V-1 s-1, achieved by reducing carrier concentration compared to traditional heavy doping. Crystal growth design and light doping enhance carrier mobility without affecting effective mass, resulting in a high power factor ~40 µW cm-1 K-2 in PbSe-Cl/Br/I crystals at 300 K. Additionally, Cl/Br/I doping reduces thermal conductivity and bipolar diffusion, leading to significantly lower thermal conductivity at high temperature. Enhanced carrier mobility and suppressed bipolar effect boost ZT values across the entire temperature range in n-type PbSe-Cl/Br/I crystals. Specifically, ZT values of PbSe-Br crystal reach ~0.6 at 300 K, ~1.2 at 773 K, and the average ZT (ZTave) reaches ~1.0 at 300-773 K. Ultimately, ~5.8% power generation efficiency in a PbSe single leg with a maximum temperature cooling difference of 40 K with 7-pair modules is achieved. These results indicate the potential for cost-effective and high-performance thermoelectric cooling modules based on PbSe.

4.
Adv Mater ; 36(25): e2401828, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466123

RESUMO

Thermoelectrics has applications in power generation and refrigeration. Since only commercial Bi2Te3 has a low abundance Te, PbSe gets attention. This work enhances the near-room temperature performance of p-type PbSe through enhancing carrier mobility via lattice plainification. Composition controlled and Cu-doped p-type PbSe crystals are grown through physical vapor deposition. Results exhibit an enhanced carrier mobility ≈2578 cm2 V-1 s-1 for Pb0.996Cu0.0004Se. Microstructure characterization and density functional theory calculations verify the introduced Cu atoms filled Pb vacancies, realizing lattice plainification and enhancing the carrier mobility. The Pb0.996Cu0.0004Se sample achieves a power factor ≈42 µW cm-1 K-2 and a ZT ≈ 0.7 at 300 K. The average ZT of it reaches ≈0.9 (300-573 K), resulting in a single-leg power generation efficiency of 7.1% at temperature difference of 270 K, comparable to that of p-type commercial Bi2Te3. A 7-pairs device paired the p-type Pb0.996Cu0.0004Se with the n-type commercial Bi2Te3 shows a maximum cooling temperature difference ≈42 K with the hot side at 300 K, ≈65% of that of the commercial Bi2Te3 device. This work highlights the potential of p-type PbSe for power generation and refrigeration near room temperature and hope to inspire researchers on replacing commercial Bi2Te3.

5.
Science ; 383(6688): 1204-1209, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484057

RESUMO

Thermoelectric cooling technology has important applications for processes such as precise temperature control in intelligent electronics. The bismuth telluride (Bi2Te3)-based coolers currently in use are limited by the scarcity of Te and less-than-ideal cooling capability. We demonstrate how removing lattice vacancies through a grid-design strategy switched PbSe from being useful as a medium-temperature power generator to a thermoelectric cooler. At room temperature, the seven-pair device based on n-type PbSe and p-type SnSe produced a maximum cooling temperature difference of ~73 kelvin, with a single-leg power generation efficiency approaching 11.2%. We attribute our results to a power factor of >52 microwatts per centimeter per square kelvin, which was achieved by boosting carrier mobility. Our demonstration suggests a path for commercial applications of thermoelectric cooling based on Earth-abundant Te-free selenide-based compounds.

6.
J Am Chem Soc ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922502

RESUMO

The room-temperature thermoelectric performance of materials underpins their thermoelectric cooling ability. Carrier mobility plays a significant role in the electronic transport property of materials, especially near room temperature, which can be optimized by proper composition control and growing crystals. Here, we grow Pb-compensated AgPb18+xSbTe20 crystals using a vertical Bridgman method. A large weighted mobility of ∼410 cm2 V-1 s-1 is achieved in the AgPb18.4SbTe20 crystal, which is almost 4 times higher than that of the polycrystalline counterpart due to the elimination of grain boundaries and Ag-rich dislocations verified by atom probe tomography, highlighting the significant benefit of growing crystals for low-temperature thermoelectrics. Due to the largely promoted weighted mobility, we achieve a high power factor of ∼37.8 µW cm-1 K-2 and a large figure of merit ZT of ∼0.6 in AgPb18.4SbTe20 crystal at 303 K. We further designed a 7-pair thermoelectric module using this n-type crystal and a commercial p-type (Bi, Sb)2Te3-based material. As a result, a high cooling temperature difference (ΔT) of ∼42.7 K and a power generation efficiency of ∼3.7% are achieved, revealing promising thermoelectric applications for PbTe-based materials near room temperature.

8.
Science ; 380(6647): 841-846, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37228203

RESUMO

Thermoelectric technology has been widely used for key areas, including waste-heat recovery and solid-state cooling. We discovered tin selenide (SnSe) crystals with potential power generation and Peltier cooling performance. The extensive off-stoichiometric defects have a larger impact on the transport properties of SnSe, which motivated us to develop a lattice plainification strategy for defects engineering. We demonstrated that Cu can fill Sn vacancies to weaken defects scattering and boost carrier mobility, facilitating a power factor exceeding ~100 microwatts per centimeter per square kelvin and a dimensionless figure of merit (ZT) of ~1.5 at 300 kelvin, with an average ZT of ~2.2 at 300 to 773 kelvin. We further realized a single-leg efficiency of ~12.2% under a temperature difference (ΔT) of ~300 kelvin and a seven-pair Peltier cooling ΔTmax of ~61.2 kelvin at ambient temperature. Our observations are important for practical applications of SnSe crystals in power generation as well as electronic cooling.

9.
Nat Commun ; 14(1): 1366, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914654

RESUMO

Crystalline thermoelectrics have been developed to be potential candidates for power generation and electronic cooling, among which SnSe crystals are becoming the most representative. Herein, we realize high-performance SnSe crystals with promising efficiency through a structural modulation strategy. By alloying strontium at Sn sites, we modify the crystal structure and facilitate the multiband synglisis in p-type SnSe, favoring the optimization of interactive parameters µ and m*. Resultantly, we obtain a significantly enhanced PF ~85 µW cm-1 K-2, with an ultrahigh ZT ~1.4 at 300 K and ZTave ~2.0 among 300-673 K. Moreover, the excellent properties lead to single-leg device efficiency of ~8.9% under a temperature difference ΔT ~300 K, showing superiority among the current low- to mid-temperature thermoelectrics, with an enhanced cooling ΔTmax of ~50.4 K in the 7-pair thermoelectric device. Our study further advances p-type SnSe crystals for practical waste heat recovery and electronic cooling.

10.
Cell Death Discov ; 8(1): 14, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013138

RESUMO

Chemotherapy resistance of tumor cells causes failure in anti-tumor therapies. Recently, N-terminal regulator of chromatin condensation 1 methyltransferase (NRMT) is abnormally expressed in different cancers. Hence, we speculate that NRMT may pay a crucial role in the development of chemosensitivity in retinoblastoma. We characterized the upregulation of NRMT in the developed cisplatin (CDDP)-resistant retinoblastoma cell line relative to parental cells. Loss-of-function experiments demonstrated that NRMT silencing enhanced chemosensitivity of retinoblastoma cells to CDDP. Next, NRMT was identified to enrich histone-H3 lysine 4 trimethylation in the promoter of centromere protein A (CENPA) by chromatin immunoprecipitation assay. Rescue experiments suggested that CENPA reduced chemosensitivity by increasing the viability and proliferation and reducing apoptosis of CDDP-resistant retinoblastoma cells, which was reversed by NRMT. Subsequently, CENPA was witnessed to induce the transcription of Myc and to elevate the expression of B cell lymphoma-2. At last, in vivo experiments confirmed the promotive effect of NRMT knockdown on chemosensitivity of retinoblastoma cells to CDDP in tumor-bearing mice. Taken together, NRMT is an inhibitor of chemosensitivity in retinoblastoma. Those findings shed new light on NRMT-targeted therapies for retinoblastoma.

11.
PLoS One ; 8(6): e64052, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776437

RESUMO

PURPOSE: The causal genes for congenital cataract are good candidates for the genetic susceptibility for age-related cataract (ARC). The aim of this study was to investigate association between the polymorphisms in the causal genes for congenital cataract and ARC in a Chinese population. Meanwhile, we performed the replication study for previous identified risk genes for ARC. METHODS: We recruited 212 sporadic Han Chinese patients with age-related cataracts (ARC) and 172 normal controls in this study. We analyzed 31 SNPs from 13 genes which mostly possible contributes the progress of ARC in a Chinese population, comprising 212 cataract patients and 172 controls. Polymorphism-spanning fragments were amplified by using the multiplex polymerase chain reaction (PCR) and genotyped using primer extension method in MassARRAY platform. Allelic and haplotypic difference in the frequencies were estimated using the SHEsis software platform. P-value was adjusted by the Bonferroni correction. RESULTS: There was no difference in the frequencies of the genotype and allele of the all SNPs between the patients with ARC and the controls. In the haplotypic analysis, the haplotypes consisting of rs7154572, rs7150141 and rs12432994 in Kinesin Light Chain 1 Gene (KLC1) showed significant association with ARC (p = 0.000878). A rare haplotype CGT was more frequent in patients (p = 0.000106, and p = 0.00795 after corrected for 75 tests). CONCLUSIONS: Our study provides evidence that the combined effect of three variants within the KLC1 gene may predispose to ARC, but the precise mechanism needs further investigating.


Assuntos
Catarata/genética , Haplótipos/genética , Proteínas Associadas aos Microtúbulos/genética , Fatores Etários , Idoso , Alelos , Povo Asiático/genética , Feminino , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Genótipo , Humanos , Cinesinas , Masculino , Pessoa de Meia-Idade
12.
Anal Chim Acta ; 762: 76-82, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23327948

RESUMO

A novel dual-function material was synthesized by anchoring a molecularly imprinted polymer (MIP) layer on CdTe/ZnS quantum dots (QDs) using a sol-gel with surface imprinting. The material exhibited highly selective and sensitive determination of ractopamine (RAC) through spectrofluorometry and solid-phase extraction (SPE) coupled with high performance liquid chromatography (HPLC). A series of adsorption experiments revealed that the material showed high selectivity, good adsorption capacity and a fast mass transfer rate. Fluorescence from the MIP-coated QDs was more strongly quenched by RAC than that of the non-imprinted polymer, which indicated that the MIP-coated QDs acted as a fluorescence sensing material could recognize RAC. In addition, the MIP-coated QDs as a sorbent was also shown to be promising for SPE coupled with HPLC for the determination of trace RAC in feeding stuffs and pork samples. Under optimal conditions, the spectrofluorometry and SPE-HPLC methods using the MIP-coated QDs had linear ranges of 5.00×10(-10)-3.55×10(-7) and 1.50×10(-10)-8.90×10(-8) mol L(-1), respectively, with limits of detection of 1.47×10(-10) and 8.30×10(-11) mol L(-1), the relative standard deviations for six repeat experiments of RAC (2.90×10(-9) mol L(-1)) were below 2.83% and 7.11%.


Assuntos
Compostos de Cádmio/química , Impressão Molecular , Fenetilaminas/análise , Polímeros/síntese química , Pontos Quânticos , Sulfetos/química , Telúrio/química , Compostos de Zinco/química , Adsorção , Ração Animal/análise , Cromatografia Líquida de Alta Pressão , Carne/análise , Dispositivos Ópticos , Fenetilaminas/química , Fenetilaminas/isolamento & purificação , Polímeros/química , Extração em Fase Sólida
13.
Mol Vis ; 17: 3423-36, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22219638

RESUMO

PURPOSE: The aim of this study was to identify glucocorticoid induced cataracts (GIC)-specific modified water insoluble-urea soluble (WI-US) crystallins and related changes after rat lens were exposed to dexamethasone (Dex). METHODS: We separated WI-US lens proteins by two-dimensional electrophoresis (2-DE). The crystallins were then analyzed with matrix assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Protein levels and morphological changes of αA- and αB-crystallins were also determined. Electronic microscope of lens and native-page analysis of crystallins were further determined. RESULTS: Measured masses, isoelectric points (pIs), and amino acid sequences of all detected crystallins matched previously-reported data. Analysis by 2-DE indicated that αA- and αB-crystallin increased when the lens was viewed under 1 µM and 10 µM Dex, which was identical with the results of western-blot, immuno histochemistry or fluorescence; ßB2- and ßA3-crystallin increased when lens was viewed under 1 µM Dex and 100 µM Dex. ßA1-, ßA4-, and ßB1-crystallins decreased under 0.1-100 µM Dex. Electronic microscope figures showed the condition of the lens center gradually worsened and cracked between fiber cells that became larger under 1-100 µM Dex. Moreover, αA-crystallins were associated with increased phosphorylation (PI decreased).The newly protein spots: ßA2-, ßA3-, ßB1-, and γs-crystallin appeared under 0.1-100 µM Dex. Native-page showed α-crystallin increased when the lens was exposed to 1 µM Dex; however, ß-crystallin did not decrease under 0.1-100 µM Dex. The percentage of α-crystallin gradually decreased, however ß-crystallin gradually increased, perhaps because the emergence of newly appeared ß-crystallin under Dex. CONCLUSIONS: Our results showed multiple WI-US crystallins may be more vulnerable to glucocorticoid stress because of diminished important roles, which will in turn provide a mechanism for GIC from a proteomics perspective.


Assuntos
Catarata/metabolismo , Cristalinas/análise , Dexametasona/efeitos adversos , Cristalino/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Catarata/induzido quimicamente , Catarata/patologia , Cristalinas/classificação , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Glucocorticoides/efeitos adversos , Cristalino/metabolismo , Cristalino/patologia , Masculino , Dados de Sequência Molecular , Peso Molecular , Proteômica , Ratos , Ratos Sprague-Dawley , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ureia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...