Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(21): 14593-14599, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38718194

RESUMO

Twisted moiré superlattice is featured with its moiré potential energy, the depth of which renders an effective approach to strengthening the exciton-exciton interaction and exciton localization toward high-performance quantum photonic devices. However, it remains as a long-standing challenge to further push the limit of moiré potential depth. Herein, owing to the pz orbital induced band edge states enabled by the unique sp-C in bilayer γ-graphdiyne (GDY), an ultradeep moiré potential of ∼289 meV is yielded. After being twisted into the hole-to-hole layer stacking configuration, the interlayer coupling is substantially intensified to augment the lattice potential of bilayer GDY up to 475%. The presence of lateral constrained moiré potential shifts the spatial distribution of electrons and holes in excitons from the regular alternating mode to their respective separated and localized mode. According to the well-established wave function distribution of electrons contained in excitons, the AA-stacked site is identified to serve for exciton localization. This work extends the materials systems available for moiré superlattice design further to serial carbon allotropes featured with benzene ring-alkyne chain coupling, unlocking tremendous potential for twistronic-based quantum device applications.

2.
Polymers (Basel) ; 11(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159362

RESUMO

Protection of intrinsically brittle quartz chromatographic columns (CCs) from breakage or property deterioration in gas chromatography (GC) analysis has become an important research topic regarding high-temperature GC techniques. Polyimide (PI) has proved to be the most suitable protective coating for quartz CCs. In the current research, a series of novel high-temperature-resistant PI coatings for quartz CCs operated over 320 °C have been successfully prepared. For this purpose, the aromatic diamine with a rigid skeleton structure 2-(4-aminophenyl)-5-aminobenzimidazole (APBI) was copolymerized with two aromatic dianhydrides-3,3',4,4'-benzophenotetracarboxylic acid dianhydride (BTDA) and 4,4'-oxydiphthalic anhydride (ODPA)-and an aromatic diamine with flexible ether linkages-4,4'-oxydianiline (ODA)-by a two-step polymerization procedure via soluble poly(amic acid) (PAA) precursors, followed by thermal imidization at elevated temperatures. The developed PI coatings exhibited good comprehensive properties, including glass transition temperatures (Tg) as high as 346.9 °C, measured by dynamic mechanical analysis (DMA), and coefficients of linear thermal expansion (CTEs) as low as 24.6 × 10-6/K in the range of 50-300 °C. In addition, the PI coatings exhibited good adhesion to the fused quartz capillary columns. No cracking, delamination, warpage, or other failures occurred during the 100-cycle thermal shock test in the range of 25-320 °C.

3.
Behav Brain Res ; 311: 24-30, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27155502

RESUMO

The zebrafish (Danio rerio) is a promising model organism for neurophenomics - a new field of neuroscience linking neural phenotypes to various genetic and environmental factors. However, the effects of prior experimental manipulations on zebrafish performance in different behavioral paradigms remain unclear. Here, we examine the influence of selected stressful procedures and test batteries on adult zebrafish anxiety-like behaviors in two commonly used models - the novel tank (NTT) and the light-dark box (LDB) tests. While no overt behavioral differences between outbred short-fin wild-type (WT) and mutant 'pink' glowfish were seen in both tests under baseline (control) conditions, an acute severe stressor (a 30-min car transportation) detected significantly lower mutant fish anxiety-like behavior in these tests. In contrast, WT zebrafish showed no overt NTT or LDB responses following a mild stressor (5-min 40-Wt light) exposure, also showing no differences in batteries of NTT and LDB run immediately one after another, or with a 1-day interval. Collectively, these findings suggest that zebrafish may be relatively less sensitive (e.g., than other popular species, such as rodents) to the test battery effect, and show that stronger stressors may be needed (to complement low-to-moderate stress aquatic screens) to better reveal phenotypical variance in zebrafish assays. Strengthening the value of zebrafish models in neurophenotyping research, this study indicates the potential of using more test batteries and a wider spectrum of pre-test stressors in zebrafish behavioral assays.


Assuntos
Ansiedade , Estresse Psicológico , Peixe-Zebra , Animais , Comportamento Animal , Feminino , Masculino , Atividade Motora , Testes Psicológicos
4.
Aquat Toxicol ; 170: 297-309, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26372090

RESUMO

Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.


Assuntos
Neurônios/metabolismo , Proteômica , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Humanos , Modelos Animais , Neurônios/efeitos dos fármacos , Psicotrópicos/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA