Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Environ Sci ; 16(6): 2603-2610, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37323468

RESUMO

Due to the increasing energy density demands of battery technology, it is vital to develop electrolytes with high electron storage capacity. Polyoxometalate (POM) clusters can act as electron sponges, storing and releasing multiple electrons and have potential as electron storage electrolytes for flow batteries. Despite this rational design of clusters for high storage ability can not yet be achieved as little is known about the features influencing storage ability. Here we report that the large POM clusters, {P5W30} and {P8W48}, can store up to 23 e- and 28 e- per cluster in acidic aqueous solution, respectively. Our investigations reveal key structural and speciation factors influencing the improved behaviour of these POMs over those previously reported (P2W18). We show, using NMR and MS, that for these polyoxotungstates hydrolysis equilibria for the different tungstate salts is key to explaining unexpected storage trends while the performance limit for {P5W30} and {P8W48}, can be attributed to unavoidable hydrogen generation, evidenced by GC. NMR spectroscopy, in combination with the MS analysis, provided experimental evidence for a cation/proton exchange process during the reduction/reoxidation process of {P5W30} which likely occurs due to this hydrogen generation. Our study offers a deeper understanding of the factors affecting the electron storage ability of POMs and provides insights allowing for further development of these materials for energy storage.

2.
Angew Chem Int Ed Engl ; 62(20): e202218897, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812050

RESUMO

The self-assembly of porous molecular nanocapsules offer unique opportunities to investigate a range of interesting phenomena and applications. However, to design nanocapsules with pre-defined properties, thorough understanding of their structure-property relation is required. Here, we report the self-assembly of two elusive members of the Keplerate family, [Mo132 Se60 O312 (H2 O)72 (AcO)30 ]42- {Mo132 Se60 } 1 and [W72 Mo60 Se60 O312 (H2 O)72 (AcO)30 ]42- {W72 Mo60 Se60 } 2, that have been synthesised using pentagonal and dimeric ([Mo2 O2 Se2 ]2+ ) building blocks and their structures have been confirmed via single crystal X-ray diffractions. Our comparative study involving the uptake of organic ions and the related ligand exchange of various ligand sizes by the {Mo132 Se60 } and previously reported Keplerates {Mo132 O60 }, {Mo132 S60 } based on the ligand exchange rates, revealed the emergence of increased "breathability" that dominates over the pore size as we transition from the {Mo132 S60 } to the "softer" {Mo132 Se60 } molecular nano-container.

3.
J Am Chem Soc ; 145(4): 2332-2341, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649125

RESUMO

Library generation experiments are a key part of the discovery of new materials, methods, and models in chemistry, but the question of how to generate high quality libraries to enable discovery is nontrivial. Herein, we use coordination chemistry to demonstrate the automation of many of the workflows used for library generation in automated hardware including the Chemputer. First, we explore the target-oriented synthesis of three influential coordination complexes, to validate key synthetic operations in our system; second, the generation of focused libraries in chemical and process space; and third, the development of a new workflow for prospecting library formation. This involved Bayesian optimization using a Gaussian process as surrogate model combined with a metric for novelty (or serendipity) quantification based on mass spectrometry data. In this way, we show directed exploration of a process space toward those areas with rarer observations and build a picture of the diversity in product distributions present across the space. We show that this effectively "engineers" serendipity into our search through the unexpected appearance of acetic anhydride, formed in situ, and solvent degradation products as ligands in an isolable series of three Co(III) anhydride complexes.

4.
Angew Chem Int Ed Engl ; 62(1): e202214203, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336660

RESUMO

Polyoxopalladates (POPs) are a class of self-assembling palladium-oxide clusters that span a variety of sizes, shapes and compositions. The largest of this family, {Pd84 }Ac , is constructed from 14 building units of {Pd6 } and lined on the inner and outer torus by 28 acetate ligands. Due to its high water solubility, large hydrophobic cavity and distinct 1 H NMR fingerprint {Pd84 }Ac is an ideal molecule for exploring supramolecular behaviour with small organic molecules in aqueous media. Molecular visualisation studies highlighted potential binding sites between {Pd84 }Ac and these species. Nuclear Magnetic Resonance (NMR) techniques, including 1 H NMR, 1 H Diffusion Ordered Spectroscopy (DOSY) and Nuclear Overhauser Spectroscopy (NOESY), were employed to study the supramolecular chemistry of this system. Here, we provide conclusive evidence that {Pd84 }Ac forms a 1 : 7 host-guest complex with benzyl viologen (BV2+ ) in aqueous solution.


Assuntos
Água , Água/química , Espectroscopia de Ressonância Magnética/métodos
5.
Chem Commun (Camb) ; 58(49): 6906-6909, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35642784

RESUMO

Molecular metal chalcogenides have attracted great attention as electrocatalysts for the hydrogen evolution reaction (HER). However, efficient utilisation of the active sites and catalytic performance modulation has been challenging. Here we explore the design of immobilized molecular molybdenum polyselenides [Mo2O2S2(Se2)(Sex)]2- that exhibit efficient hydrogen evolution at low overpotential and stability over 1000 cycles. Density functional calculations provide evidence of a unimolecular mechanism in the HER process via the exploration of viable reaction pathways. The discussed findings are of a broad interest in the development of efficient molecular electrocatalytic materials.


Assuntos
Hidrogênio , Molibdênio , Catálise , Hidrogênio/química , Molibdênio/química
6.
Angew Chem Int Ed Engl ; 61(21): e202201672, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257462

RESUMO

The assembly of nanoscale polyoxometalate (POM) clusters has been dominated by the highly reduced icosahedral {Mo132 } "browns" and the toroidal {Mo154 } "blues" which are 45 % and 18 % reduced, respectively. We hypothesised that there is space for a greater diversity of structures in this immediate reduction zone. Here we show it is possible to make highly reduced mix-valence POMs by presenting new classes of polyoxomolybdates: [MoV 52 MoVI 12 H26 O200 ]42- {Mo64 } and [MoV 40 MoVI 30 H30 O215 ]20- {Mo70 }, 81 % and 57 % reduced, respectively. The {Mo64 } cluster archetype has a super-cube structure and is composed of five different types of building blocks, each arranged in overlayed Archimedean or Platonic polyhedra. The {Mo70 } cluster comprises five tripodal {MoV 6 } and five tetrahedral {MoV 2 MoVI 2 } building blocks alternatively linked to form a loop with a pentagonal star topology. We also show how the reaction yielding the {Mo64 } super-cube can be used in the enrichment of lanthanides which exploit the differences in selectivity in the self-assembly of the polyoxometalates.

7.
J Am Chem Soc ; 143(48): 20059-20063, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34812622

RESUMO

Giant polyoxomolybdates are traditionally synthesized by chemical reduction of molybdate in aqueous solutions, generating complex nanostructures such as the highly symmetrical spherical {Mo102} and {Mo132}, ring-shaped {Mo154} and {Mo176}, and the gigantic protein sized {Mo368}, which combines both positive and negative curvature. These complex polyoxometalates are known to be highly sensitive to reaction conditions and are often difficult to reproduce, especially {Mo368}, which is often produced in yields far below 1%, meaning further investigation has always been limited. While the electrochemical properties of these materials have been studied, their electrochemical synthesis has not been explored. Herein, we demonstrate an alternative reliable synthetic method by means of electrochemistry. By using electrochemical synthesis, we have shown the synthesis of various reported polyoxomolybdates, along with some unreported structures with unique features that have yet to be reported by traditional synthetic methods. The six different giant polyoxomolybdates that were obtained via electrochemical synthesis range from the spherical {Mo102-xFex} and {Mo132} to the ring-shaped {Mo148} and {Mo154-x}, as well as the largest known polyoxometalate {Mo368}, with improved yield (up to 26.1% for {Mo368}), increased reproducibility, and shorter crystallization time compared to chemical reduction methods.

8.
Inorg Chem ; 60(19): 14772-14778, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34549944

RESUMO

Metal organic polyhedra (MOPs) such as coordination cages and clusters are increasingly utilized across many fields, but their geometrically selective assembly during synthesis is nontrivial. When ligand coordination along these polyhedral edges is arranged in an unsymmetrical mode or the bridging ligand itself is nonsymmetric, a vast combinatorial space of potential isomers exists complicating formation and isolation. Here we describe two generalizable combinatorial methodologies to explore the geometrical space and enumerate the configurational isomers of MOPs with discrimination of the chiral and achiral structures. The methodology has been applied to the case of the octahedron {Bi6Fe13L12} which has unsymmetrical coordination of a carboxylate ligand (L) along its edges. For these polyhedra, the enumeration methodology revealed 186 distinct isomers, including 74 chiral pairs and 38 achiral. To explore the programming of these, we then used a range of ligands to synthesize several configurational isomers. Our analysis demonstrates that ligand halo-substituents influence isomer symmetry and suggests that more symmetric halo-substituted ligands counterintuitively yield lower symmetry isomers. We performed mass spectrometry studies of these {Bi6Fe13L12} clusters to evaluate their stability and aggregation behavior in solution and the gas phase showing that various isomers have different levels of aggregation in solution.

9.
Chemistry ; 27(48): 12327-12334, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34196438

RESUMO

Determining the relative configuration or enantiomeric excess of a substance may be achieved using NMR spectroscopy by employing chiral shift reagents (CSRs). Such reagents interact noncovalently with the chiral solute, resulting in each chiral form experiencing different magnetic anisotropy; this is then reflected in their NMR spectra. The Keplerate polyoxometalate (POM) is a molybdenum-based, water-soluble, discrete inorganic structure with a pore-accessible inner cavity, decorated by differentiable ligands. Through ligand exchange from the self-assembled nanostructure, a set of chiral Keplerate host molecules has been synthesised. By exploiting the interactions of analyte molecules at the surface pores, the relative configuration of chiral amino alcohol guests (phenylalaninol and 2-amino-1-phenylethanol) in aqueous solvent was establish and their enantiomeric excess was determined by 1 H NMR using shifts of ΔΔδ=0.06 ppm. The use of POMs as chiral shift reagents represents an application of a class that is yet to be well established and opens avenues into aqueous host-guest chemistry with self-assembled recognition agents.


Assuntos
Amino Álcoois , Água , Cápsulas , Óxidos , Estereoisomerismo
10.
Dalton Trans ; 50(7): 2350-2353, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33564815

RESUMO

A family of six polyoxometalate-based magnetic compounds were synthesized by anchoring N-oxide type TEMPO radicals onto an Anderson type polyoxometalate cluster. The complexes were structurally characterised by single crystal X-ray diffraction and the intramolecular paramagnetic interactions between TEMPO radicals and Mn ions of the resulting hybrids were investigated in detail by electron paramagnetic resonance and the Evans NMR method.

11.
ACS Cent Sci ; 6(9): 1587-1593, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32999934

RESUMO

The exploration of complex multicomponent chemical reactions leading to new clusters, where discovery requires both molecular self-assembly and crystallization, is a major challenge. This is because the systematic approach required for an experimental search is limited when the number of parameters in a chemical space becomes too large, restricting both exploration and reproducibility. Herein, we present a synthetic strategy to systematically search a very large set of potential reactions, using an inexpensive, high-throughput platform that is modular in terms of both hardware and software and is capable of running multiple reactions with in-line analysis, for the automation of inorganic and materials chemistry. The platform has been used to explore several inorganic chemical spaces to discover new and reproduce known tungsten-based, mixed transition-metal polyoxometalate clusters, giving a digital code that allows the easy repeat synthesis of the clusters. Among the many species identified in this work, the most significant is the discovery of a novel, purely inorganic W24FeIII-superoxide cluster formed under ambient conditions. The modular wheel platform was employed to undertake two chemical space explorations, producing compounds 1-4: (C2H8N)10Na2[H6Fe(O2)W24O82] (1, {W24Fe}), (C2H8N)72Na16[H16Co8W200O660(H2O)40] (2, {W200Co8}), (C2H8N)72Na16[H16Ni8W200O660(H2O)40] (3, {W200Ni8}), and (C2H8N)14[H26W34V4O130] (4, {W34V4}), along with many other known species, such as simple Keggin clusters and 1D {W11M2+} chains.

12.
J Am Chem Soc ; 142(41): 17508-17514, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32965108

RESUMO

Polyoxometalate molybdenum blue (MB) complexes typically exist as discrete multianionic clusters and are composed of repeating Mo building units. MB wheels such as {Mo176} and {Mo154} are made from pentagon-centered {Mo8} building blocks joined by equal number of {Mo1} units as loin, and {Mo2} dimer units as skirt along the ring edge, with the ring sizes of the MB wheels modulated by the {Mo2} units. Herein we report a new class of contracted lanthanide-doped MB structures that have replaced all the {Mo2} units with lanthanide ions on the inner rim, giving the general formula {Mo90Ln10}. We show three examples of this new decameric {Mo90Ln10} (Ln = La, Ce, and Pr) framework synthesized by high temperature reduction and demonstrate that later Ln ions result in {Mo92Ln9} (Ln = Nd, Sm), conserving one {Mo2} linker unit in its structure, as a consequence of the lanthanide contraction. Remarkably the {Mo90Ln10} compounds are the first examples of charge-neutral molybdate wheels as confirmed by BVS, solubility experiments, and redox titrations. We detail our full synthetic optimization for the isolation of these clusters and complete characterization by X-ray, TGA, UV-vis, and ICP studies. Finally, we show that this fine-tuned self-assembly process can be utilized to selectively enrich Ln-MB wheels for effective separation of lanthanides.

13.
Proc Natl Acad Sci U S A ; 117(20): 10699-10705, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371490

RESUMO

Here we show how a simple inorganic salt can spontaneously form autocatalytic sets of replicating inorganic molecules that work via molecular recognition based on the {PMo12} ≡ [PMo12O40]3- Keggin ion, and {Mo36} ≡ [H3Mo57M6(NO)6O183(H2O)18]22- cluster. These small clusters are able to catalyze their own formation via an autocatalytic network, which subsequently template the assembly of gigantic molybdenum-blue wheel {Mo154} ≡ [Mo154O462H14(H2O)70]14-, {Mo132} ≡ [MoVI72MoV60O372(CH3COO)30(H2O)72]42- ball-shaped species containing 154 and 132 molybdenum atoms, and a {PMo12}⊂{Mo124Ce4} ≡ [H16MoVI100MoV24Ce4O376(H2O)56 (PMoVI10MoV2O40)(C6H12N2O4S2)4]5- nanostructure. Kinetic investigations revealed key traits of autocatalytic systems including molecular recognition and kinetic saturation. A stochastic model confirms the presence of an autocatalytic network involving molecular recognition and assembly processes, where the larger clusters are the only products stabilized by the cycle, isolated due to a critical transition in the network.

14.
Angew Chem Int Ed Engl ; 59(28): 11256-11261, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32419277

RESUMO

We present a chemical discovery robot for the efficient and reliable discovery of supramolecular architectures through the exploration of a huge reaction space exceeding ten billion combinations. The system was designed to search for areas of reactivity found through autonomous selection of the reagent types, amounts, and reaction conditions aiming for combinations that are reactive. The process consists of two parts where reagents are mixed together, choosing from one type of aldehyde, one amine and one azide (from a possible family of two amines, two aldehydes and four azides) with different volumes, ratios, reaction times, and temperatures, whereby the reagents are passed through a copper coil reactor. Next, either cobalt or iron is added, again from a large number of possible quantities. The reactivity was determined by evaluating differences in pH, UV-Vis, and mass spectra before and after the search was started. The algorithm was focused on the exploration of interesting regions, as defined by the outputs from the sensors, and this led to the discovery of a range of 1-benzyl-(1,2,3-triazol-4-yl)-N-alkyl-(2-pyridinemethanimine) ligands and new complexes: [Fe(L1 )2 ](ClO4 )2 (1); [Fe(L2 )2 ](ClO4 )2 (2); [Co2 (L3 )2 ](ClO4 )4 (3); [Fe2 (L3 )2 ](ClO4 )4 (4), which were crystallised and their structure confirmed by single-crystal X-ray diffraction determination, as well as a range of new supramolecular clusters discovered in solution using high-resolution mass spectrometry.

15.
Chem Sci ; 11(9): 2388-2393, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-34084401

RESUMO

Eight alkene-functionalized molybdenum-based spherical Keplerate-type (inorganic fullerene) structures have been obtained via both direct and multistep synthetic approaches. Driven by the opportunity to design unique host-guest interactions within hydrophobic, π-electron rich confined environments, we have synthesised {(NH4)42[Mo132O372(L)30(H2O)72]}, where L = (1) acrylic acid, (2) crotonic acid, (3) methacrylic acid, (4) tiglic acid, (5) 3-butenoic acid, (6) 4-pentenoic acid, (7) 5-hexenoic acid, and (8) sorbic acid. The compounds, which are obtained in good yield (10-40%), contain 30 carboxylate-coordinated alkene ligands which create a central cavity with hydrophobic character. Extensive Nuclear Magnetic Resonance (NMR) spectroscopy studies contribute significantly to the complete characterisation of the structures obtained, including both 1D and 2D measurements. In addition, single-crystal X-ray crystallography and subsequently-generated electron density maps are employed to highlight the distribution in ligand tail positions. These alkene-containing structures are shown to effectively encapsulate small alkyl thiols (1-propanethiol (A), 2-propanethiol (B), 1-butanethiol (C), 2-butanethiol (D) and 2-methyl-1-propanethiol (E)) as guests within the central cavity in aqueous solution. The hydrophobically driven clustering of up to 6 equivalents of volatile thiol guests within the central cavity of the Keplerate-type structure results in effective thermal protection, preventing evaporation at elevated temperatures (ΔT ≈ 25 K).

16.
Chem Sci ; 12(7): 2427-2432, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34164008

RESUMO

The precise control over the formation of complex nanostructures, e.g. polyoxometalates (POMs), at the sub-nanoscale is challenging but critical if non-covalent architectures are to be designed. Combining biologically-evolved systems with inorganic nanostructures could lead to sequence-mediated assembly. Herein, we exploit oligopeptides as multidentate structure-directing ligands via metal-coordination and hydrogen bonded interactions to modulate the self-assembly of POM superstructures. Six oligopeptides (GH, AH, SH, G2H, G4H and G5H) are incorporated into the cavities of Molybdenum Blue (MB) POM nanowheels. It is found that the helicity of the nanowheel can be readily switched (Δ to Λ) by simply altering the N-terminal amino acid on the peptide chain rather than their overall stereochemistry. We also reveal a delicate balance between the Mo-coordination and the hydrogen bonds found within the internal cavity of the inorganic nanowheels which results in the sequence mediated formation of two unprecedented asymmetrical nanowheel frameworks: {Mo122Ce5} and {Mo126Ce4}.

17.
Angew Chem Int Ed Engl ; 58(48): 17282-17286, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31538679

RESUMO

The construction of pure-inorganic framework materials with well-defined design rules and building blocks is challenging. In this work, we show how a polyoxometalate cluster with an integrated pore, based on [P8 W48 O184 ]40- (abbreviated as {P8 W48 }), can be self-assembled into inorganic frameworks using silver ions, which both enable reactions on the cluster as well as link them together. The {P8 W48 } was found to be highly reactive with silver ions resulting in the in situ generation of fragments, forming {P9 W63 O235 } and {P10 W66 O251 } in compound (1) where these two clusters co-crystallize and are connected into a POMZite framework with 11 Ag+ ions as linkers located inside clusters and 10 Ag+ linking ions situated between clusters. Decreasing both the concentration of Ag+ ions, and the reaction temperature compared to the synthesis of compound (1), leads to {P8 W51 O196 } in compound 2 where the {P8 W48 } clusters are linked to form a new POMZite framework with 9 Ag+ ions per formula unit. Further tuning of the reaction conditions yields a cubic porous network compound (3) where {P8 W48 } clusters as cubic sides are joined by 4 Ag+ ions to give a cubic array and no Ag+ ions were found inside the clusters.

18.
J Am Chem Soc ; 141(34): 13479-13486, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31295408

RESUMO

The synthesis of anisotropic redox-active polyoxometalates (POMs) that can switch between multiple states is critical for understanding the mechanism of assembly of structures with a high aspect ratio, as well as for their application in electronic devices. However, a synthetic methodology for the controlled growth of such clusters is lacking. Here we describe a strategy, using the heteroanion-directed assembly, to produce a family of 10 multi-layered, anisotropic POM cages templated by redox-active pyramidal heteroanions with the composition [W16Mo2O54(XO3)]n-, [W21Mo3O75/76(XO3)2]m-, and [W26Mo4O93(XO3)3]o- for the double, triple, and quadruple layered clusters, respectively. It was found that the introduction of reduced molybdate is essential for self-assembly and results in mixed-metal (W/Mo) and mixed-valence (WVI/MoV) POM cages, as confirmed by an array of analytical techniques. To probe the archetype in detail, a tetrabutyl ammonium (TBA) salt derivative of a fully oxidized two-layered cage is produced as a model structure to confirm that all the cages are a statistical mixture of isostructures with variable ratios of W/Mo. Finally, it was found that multilayered POM cages exhibit dipolar relaxations due to the presence of the mixed valence WVI/MoV metal centers, demonstrating their potential use for electronic materials.

19.
Nature ; 570(7762): E67-E69, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31243376

RESUMO

Change history: Owing to the misidentification of compound 22 in the original Letter, changes have been made to Fig. 5, Extended Data Fig. 2 and the main text; see accompanying Amendment.

20.
Angew Chem Int Ed Engl ; 58(32): 10867-10872, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31155800

RESUMO

Template-mediated synthesis is a powerful approach to build a variety of functional materials and complex supramolecular systems. However, the systematic study of how templates structurally evolve from basic building blocks, and then affect the templated self-assembly, is critical to understanding and utilizing the underlying mechanism, to work towards designed assembly. Here we describe the templated self-assembly of a series of gigantic Mo Blue (MB) clusters 1-4 using l-ornithine as a structure-directing ligand. We show that by using l-ornithine as a structure director, we can form new template⊂host assemblies. Based on the structural relationship between encapsulated templates of {Mo8 } (1), {Mo17 } (2) and {Mo36 } (4), a pathway of the structural evolution of templates is proposed. This provides insight into how gigantic Mo Blue cluster rings form and could lead to full control over the designed assembly of gigantic Mo-blue rings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA