Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7612, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556523

RESUMO

Europe imports large amounts of soybean that are predominantly used for livestock feed, mainly sourced from Brazil, USA and Argentina. In addition, the demand for GM-free soybean for human consumption is project to increase. Soybean has higher protein quality and digestibility than other legumes, along with high concentrations of isoflavones, phytosterols and minerals that enhance the nutritional value as a human food ingredient. Here, we examine the potential to increase soybean production across Europe for livestock feed and direct human consumption, and review possible effects on the environment and human health. Simulations and field data indicate rainfed soybean yields of 3.1 ± 1.2 t ha-1 from southern UK through to southern Europe (compared to a 3.5 t ha-1 average from North America). Drought-prone southern regions and cooler northern regions require breeding to incorporate stress-tolerance traits. Literature synthesized in this work evidenced soybean properties important to human nutrition, health, and traits related to food processing compared to alternative protein sources. While acknowledging the uncertainties inherent in any modelling exercise, our findings suggest that further integrating soybean into European agriculture could reduce GHG emissions by 37-291 Mt CO2e year-1 and fertiliser N use by 0.6-1.2 Mt year-1, concurrently improving human health and nutrition.


Assuntos
Fabaceae , Glycine max , Humanos , Melhoramento Vegetal , Agricultura , Europa (Continente)
2.
Plants (Basel) ; 12(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38068688

RESUMO

Wheat is a staple food in many areas around the World. In the 20th century, breeders and scientists were able to boost wheat yield considerably. However, a yield plateau has become a concern and is threatening food security. Investments in cutting-edge technologies, including genomics and precision phenology measurements, can provide valuable tools to drive crop improvement. The objectives of this study were to (i) investigate the genetic diversity in a set of winter wheat lines, (ii) characterize their phenological response under different vernalization and photoperiod conditions, and (iii) identify effective markers associated with the phenological traits. A total of 249 adapted genotypes of different geographical origin were genotyped using the 35K Axiom® Wheat Breeder's Array. A total of 11,476 SNPs were used for genetic analysis. The set showed an average polymorphism information content of 0.37 and a genetic diversity of 0.43. A population structure analysis revealed three distinct subpopulations mainly related to their geographical origin (Europe, North America, and Western Asia). The lines of CGIAR origin showed the largest diversity and the lowest genetic distance to all other subpopulations. The phenology of the set was studied under controlled conditions using four combinations of long (19 h light) and short photoperiod (13 h light) and long vernalization (49 days at 5 °C) and no vernalization. With this, phenological traits such as earliness per se (Eps), relative response to vernalization (RRV), and relative response to photoperiod (RRP) were calculated. The phenotypic variation of growing degree days was significant in all phenology combinations. RRV ranged from 0 to 0.56, while RRP was higher with an overall average of 0.25. The GWAS analysis detected 30 marker-trait associations linked to five phenological traits. The highest significant marker was detected on chromosome 2D with a value of -log10(p) = 11.69. Only four loci known to regulate flowering exceeded the Bonferroni correction threshold of -log10(p) > 5.1. These results outline a solid foundation to address global food security and offer tremendous opportunities for advancing crop improvement strategies.

3.
Front Plant Sci ; 14: 1245362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37964999

RESUMO

Introduction: Climate change poses significant challenges to agriculture, impacting crop yields and necessitating adaptive strategies in breeding programs. This study investigates the genetic yield progress of wheat varieties in Catalonia, Spain, from 2007 to 2021, and examines the relationship between genetic yield and climate-related factors, such as temperature. Understanding these dynamics is crucial for ensuring the resilience of wheat crops in the face of changing environmental conditions. Methods: Genetic yield progress was assessed using a linear regression function, comparing the average yield changes of newly released wheat varieties to benchmark varieties. Additionally, a quadratic function was employed to model genetic yield progress in winter wheat (WW). The study also analyzed correlations between genetic yield (GY) and normalized values of hectoliter weight (HLW) and the number of grains (NG) for both spring wheat (SW) and WW. Weather data were used to confirm climate change impacts on temperature and its effects on wheat growth and development. Results: The study found that genetic yield was stagnant for SW but increased linearly by 1.31% per year for WW. However, the quadratic function indicated a possible plateau in WW genetic yield progress in recent years. Positive correlations were observed between GY and normalized values of HLW and NG for both SW and WW. Climate change was evident in Catalonia, with temperatures increasing at a rate of 0.050 °C per year. This rise in temperature had detrimental effects on days to heading (DH) and HLW, with reductions observed in both SW and WW for each °C increase in annual minimum and average temperature. Discussion: The findings highlighted the urgent need to address the impact of climate change on wheat cultivation. The stagnation of genetic yield in SW and the potential plateau in WW genetic yield progress call for adaptive measures. Breeding programs should prioritize phenological adjustments, particularly sowing date optimization, to align with the most favorable months of the year. Moreover, efforts should be made to enhance HLW and the number of grains per unit area in new wheat varieties to counteract the negative effects of rising temperatures. This research underscores the importance of ongoing monitoring and adaptation in agricultural practices to ensure yield resilience in the context of a changing climate.

4.
Plants (Basel) ; 12(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005768

RESUMO

This study considers critical aspects of water management and crop productivity in wheat cultivation, specifically examining the daily cumulative actual evapotranspiration (ETa). Traditionally, ETa surface energy balance models have provided estimates at discrete time points, lacking a holistic integrated approach. Field trials were conducted with 22 distinct wheat varieties, grown under both irrigated and rainfed conditions over a two-year span. Leaf area index prediction was enhanced through a robust multiple regression model, incorporating data acquired from an unmanned aerial vehicle using an RGB sensor, and resulting in a predictive model with an R2 value of 0.85. For estimation of the daily cumulative ETa integral, an integrated approach involving remote sensing and energy balance models was adopted. An examination of the relationships between crop yield and evapotranspiration (ETa), while considering factors like year, irrigation methods, and wheat cultivars, unveiled a pronounced positive asymptotic pattern. This suggests the presence of a threshold beyond which additional water application does not significantly enhance crop yield. However, a genetic analysis of the 22 wheat varieties showed no correlation between ETa and yield. This implies opportunities for selecting resource-efficient wheat varieties while minimizing water use. Significantly, substantial disparities in water productivity among the tested wheat varieties indicate the possibility of intentionally choosing lines that can optimize grain production while minimizing water usage within breeding programs. The results of this research lay the foundation for the development of resource-efficient agricultural practices and the cultivation of crop varieties finely attuned to water-scarce regions.

5.
Front Plant Sci ; 14: 1230012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860263

RESUMO

Introduction: Rice heavily relies on nitrogen fertilizers, posing environmental, resource, and geopolitical challenges. This study explores sustainable alternatives like animal manure and remote sensing for resource-efficient rice cultivation. It aims to assess the long-term impact of organic fertilization and remote sensing monitoring on agronomic traits, yield, and nutrition. Methods: A six-year experiment in rice fields evaluated fertilization strategies, including pig slurry (PS) and chicken manure (CM) with mineral fertilizers (MIN), MIN-only, and zero-fertilization. Traits, yield, spectral responses, and nutrient content were measured. Sentinel-2 remote sensing tracked crop development. Results: Cost-effective organic fertilizers (PS and CM) caused a 13% and 15% yield reduction but still doubled zero-fertilization yield. PS reduced nitrogen leaching. Heavy metals in rice grains were present at safe amounts. Organic-fertilized crops showed nitrogen deficiency at the late vegetative stages, affecting yield. Sentinel-2 detected nutrient deficiencies through NDVI. Discussion: Organic fertilizers, especially PS, reduce nitrogen loss, benefiting the environment. However, they come with yield trade-offs and nutrient management challenges that can be managed and balanced with reduced additional mineral applications. Sentinel-2 remote sensing helps manage nutrient deficiencies. In summary, this research favors cost-effective organic fertilizers with improved nutrient management for sustainable rice production.

6.
Front Plant Sci ; 14: 1063983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077632

RESUMO

The development of accurate grain yield (GY) multivariate models using normalized difference vegetation index (NDVI) assessments obtained from aerial vehicles and additional agronomic traits is a promising option to assist, or even substitute, laborious agronomic in-field evaluations for wheat variety trials. This study proposed improved GY prediction models for wheat experimental trials. Calibration models were developed using all possible combinations of aerial NDVI, plant height, phenology, and ear density from experimental trials of three crop seasons. First, models were developed using 20, 50 and 100 plots in training sets and GY predictions were only moderately improved by increasing the size of the training set. Then, the best models predicting GY were defined in terms of the lowest Bayesian information criterion (BIC) and the inclusion of days to heading, ear density or plant height together with NDVI in most cases were better (lower BIC) than NDVI alone. This was particularly evident when NDVI saturates (with yields above 8 t ha-1) with models including NDVI and days to heading providing a 50% increase in the prediction accuracy and a 10% decrease in the root mean square error. These results showed an improvement of NDVI prediction models by the addition of other agronomic traits. Moreover, NDVI and additional agronomic traits were unreliable predictors of grain yield in wheat landraces and conventional yield quantification methods must be used in this case. Saturation and underestimation of productivity may be explained by differences in other yield components that NDVI alone cannot detect (e.g. differences in grain size and number).

7.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675215

RESUMO

Knowledge of the genetic basis of traits controlling phenology, differentiation patterns, and environmental adaptation is essential to develop new cultivars under climate change conditions. Landrace collections are an appropriate platform to study the hidden variation caused by crop breeding. The use of genome-wide association analysis for phenology, climatic data and differentiation among Mediterranean landraces led to the identification of 651 marker-trait associations that could be grouped in 46 QTL hotspots. A candidate gene analysis using the annotation of the genome sequence of the wheat cultivar 'Chinese Spring' detected 1097 gene models within 33 selected QTL hotspots. From all the gene models, 42 were shown to be differentially expressed (upregulated) under abiotic stress conditions, and 9 were selected based on their levels of expression. Different gene families previously reported for their involvement in different stress responses were found (protein kinases, ras-like GTP binding proteins and ethylene-responsive transcription factors). Finally, the synteny analysis in the QTL hotspots regions among the genomes of wheat and other cereal species identified 23, 21 and 7 ortho-QTLs for Brachypodium, rice and maize, respectively, confirming the importance of these loci.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Mapeamento Cromossômico , Triticum/genética , Estudos Prospectivos , Melhoramento Vegetal
8.
J Med Microbiol ; 71(7)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35819894

RESUMO

Hypothesis/Gap Statement. The impacts of increased biomarker testing on antifungal prescribing have not yet been fully examined in a real-life setting.Objectives. Biomarkers for invasive fungal disease (IFD) have been shown to reduce antifungal prescriptions in neutropaenic haemato-oncology patients. Our study aimed to assess the real-life impacts of introducing a novel biomarker-based pathway, incorporating serum galactomannan and Aspergillus PCR, for pyrexial haemato-oncology admissions.Methods. Patients with neutropaenic fever were identified prospectively after introduction of the new pathway from 2013-2015. A historical group of neutropaenic patients who had blood cultures taken from 2009-2012 was generated for comparison. Clinical details, including demographics, underlying diagnosis, investigations, radiology and antimicrobial treatment were obtained.Results. Prospective data from 308 patients were compared to retrospective data from 302 patients. The proportion of patients prescribed an antifungal medication was unchanged by the pathway (P=0.79), but the pattern was different, with more patients receiving targeted antifungals (P=0.04). A negative serum galactomannan test was not sufficient evidence to withhold therapy, with 17.2% of these episodes felt to have possible or probable IFD using the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. There was no difference in 30-day mortality (P=0.21) or 1-year mortality (P=0.57) following introduction of the pathway.Conclusions. Biomarkers can be used safely as part of a multidisciplinary approach to the diagnosis of IFD in neutropaenic haemato-oncology patients. Whilst they do not necessarily result in antifungal therapy being withheld, they can allow more confident diagnosis of IFD and more specific antifungal therapy in selected cases.


Assuntos
Infecções Fúngicas Invasivas , Micoses , Neoplasias , Antifúngicos/uso terapêutico , Biomarcadores/análise , Humanos , Infecções Fúngicas Invasivas/diagnóstico , Infecções Fúngicas Invasivas/tratamento farmacológico , Micoses/diagnóstico , Neoplasias/complicações , Estudos Prospectivos , Estudos Retrospectivos
9.
Front Plant Sci ; 12: 735192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616417

RESUMO

Understanding the genetic basis of agronomic traits is essential for wheat breeding programs to develop new cultivars with enhanced grain yield under climate change conditions. The use of high-throughput phenotyping (HTP) technologies for the assessment of agronomic performance through drought-adaptive traits opens new possibilities in plant breeding. HTP together with a genome-wide association study (GWAS) mapping approach can be a useful method to dissect the genetic control of complex traits in wheat to enhance grain yield under drought stress. This study aimed to identify molecular markers associated with agronomic and remotely sensed vegetation index (VI)-related traits under rainfed conditions in bread wheat and to use an in silico candidate gene (CG) approach to search for upregulated CGs under abiotic stress. The plant material consisted of 170 landraces and 184 modern cultivars from the Mediterranean basin. The collection was phenotyped for agronomic and VI traits derived from multispectral images over 3 and 2 years, respectively. The GWAS identified 2,579 marker-trait associations (MTAs). The quantitative trait loci (QTL) overview index statistic detected 11 QTL hotspots involving more than one trait in at least 2 years. A CG analysis detected 12 CGs upregulated under abiotic stress in six QTL hotspots and 46 downregulated CGs in 10 QTL hotspots. The current study highlights the utility of VI to identify chromosome regions that contribute to yield and drought tolerance under rainfed Mediterranean conditions.

10.
Mol Plant ; 14(6): 874-887, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713844

RESUMO

Identifying mechanisms and pathways involved in gene-environment interplay and phenotypic plasticity is a long-standing challenge. It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction. A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments. With extensive field-observed complex traits, environmental profiles, and genome-wide single nucleotide polymorphisms for three major crops (maize, wheat, and oat), we demonstrated that identifying such an environmental index (i.e., a combination of environmental parameter and growth window) enables genome-wide association studies and genomic selection of complex traits to be conducted with an explicit environmental dimension. Interestingly, genes identified for two reaction-norm parameters (i.e., intercept and slope) derived from flowering time values along the environmental index were less colocalized for a diverse maize panel than for wheat and oat breeding panels, agreeing with the different diversity levels and genetic constitutions of the panels. In addition, we showcased the usefulness of this framework for systematically forecasting the performance of diverse germplasm panels in new environments. This general framework and the companion CERIS-JGRA analytical package should facilitate biologically informed dissection of complex traits, enhanced performance prediction in breeding for future climates, and coordinated efforts to enrich our understanding of mechanisms underlying phenotypic variation.


Assuntos
Avena/genética , Interação Gene-Ambiente , Triticum/genética , Zea mays/genética , Avena/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
11.
Front Plant Sci ; 11: 838, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655598

RESUMO

Wheat adaptability to a wide range of environmental conditions is mostly determined by allelic diversity within genes controlling vernalization requirement (Vrn-1) and photoperiod sensitivity (Ppd-1). We characterized a panel of 151 durum wheat Mediterranean landraces and 20 representative locally adapted modern cultivars for their allelic composition at Vrn-1 and Ppd-1 gene using diagnostic molecular markers and studied their association with the time needed to reach six growth stages under field conditions over 6 years. Compared with the more diverse and representative landrace collection, the set of modern cultivars were characterized by a reduction of 50% in the number of allelic variants at the Vrn-A1 and Vrn-B1 genes, and the high frequency of mutant alleles conferring photoperiod insensitivity at Ppd-A1, which resulted on a shorter cycle length. Vrn-A1 played a greater role than Vrn-B1 in regulating crop development (Vrn-A1 > Vrn-B1). The results suggest that mutations in the Vrn-A1 gene may have been the most important in establishing the spring growth habit of Mediterranean landraces and modern durum cultivars. The allele Vrn-A1d, found in 10 landraces, delayed development. The relative effects of single Vrn-A1 alleles on delaying the development of the landraces were vrn-A1 = Vrn-A1d > Vrn-A1b > Vrn-A1c. Allele vrn-B1 was present in all except two landraces and in all modern cultivars. The null allele at Ppd-A1 (a deletion first observed in the French bread wheat cultivar 'Capelle-Desprez') was found for the first time in durum wheat in the present study that identified it in 30 landraces from 13 Mediterranean countries. Allele Ppd-A1a (GS105) was detected in both germplasm types, while the allele Ppd-A1a (GS100) was found only in modern North American and Spanish cultivars. The relative effect of single Ppd-A1 alleles on extending phenological development was Ppd-A1(DelCD) > Ppd-A1b > Ppd-A1a (GS105) > Ppd-A1a (GS100). Sixteen Vrn-1+Ppd-1 allelic combinations were found in landraces and six in modern cultivars, but only three were common to both panels. Differences in the number of days to reach anthesis were 10 days in landraces and 3 days in modern cultivars. Interactive effects between Vrn-1 and Ppd-1 genes were detected.

13.
Front Plant Sci ; 9: 563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29765385

RESUMO

Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s) they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years) and by defining a probabilistic range of trait variations [phenology and plant height (PH)] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions). Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading). Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots) was tested against monoculture (if only a single genotype grown in the same area) and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny selection are discussed: narrow range of variation for phenology in families may facilitate the discovery and selection of new drought-resistant and avoidant wheat lines targeting specific locations.

14.
Theor Appl Genet ; 129(11): 2055-2074, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27545985

RESUMO

KEY MESSAGE: Staygreen traits are associated with heat tolerance in bread wheat. QTL for staygreen and related traits were identified across the genome co-located with agronomic and physiological traits associated to plant performance under heat stress. Plant chlorophyll retention-staygreen-is considered a valuable trait under heat stress. Five experiments with the Seri/Babax wheat mapping population were sown in Mexico under hot-irrigated environments. Normalized difference vegetation index (NDVI) during plant growth was measured regularly and modelled to capture the dynamics of plant greenness decay, including staygreen (Stg) at physiological maturity which was estimated by regression of NDVI during grainfilling. The rate of senescence, the percentage of plant greenness decay, and the area under the curve were also estimated based on NDVI measurements. While Stg and the best fitted curve were highly environment dependent, both traits showed strong (positive for Stg) correlations with yield, grainfilling rates, and extended grainfilling periods, while associations with kernel number and kernel weight were weak. Stg expression was largely dependent on rate of senescence which was related to the pattern of the greenness decay curve and the initial NDVI. QTL analyses revealed a total of 44 loci across environments linked to Stg and related traits, distributed across the genome, with the strongest and most repeatable effects detected on chromosomes 1B, 2A, 2B, 4A, 4B and 7D. Of these, some were common with regions controlling phenology but independent regions were also identified. The co-location of QTL for Stg and performance traits in this study confirms that the staygreen phenotype is a useful trait for productivity enhancement in hot-irrigated environments.


Assuntos
Mapeamento Cromossômico , Temperatura Alta , Locos de Características Quantitativas , Triticum/genética , Modelos Lineares , México , Modelos Genéticos , Fenótipo , Triticum/fisiologia
15.
J Exp Bot ; 66(12): 3477-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25821073

RESUMO

Climate change has generated unpredictability in the timing and amount of rain, as well as extreme heat and cold spells that have affected grain yields worldwide and threaten food security. Sources of specific adaptation related to drought and heat, as well as associated breeding of genetic traits, will contribute to maintaining grain yields in dry and warm years. Increased crop photosynthesis and biomass have been achieved particularly through disease resistance and healthy leaves. Similarly, sources of drought and heat adaptation through extended photosynthesis and increased biomass would also greatly benefit crop improvement. Wheat landraces have been cultivated for thousands of years under the most extreme environmental conditions. They have also been cultivated in lower input farming systems for which adaptation traits, particularly those that increase the duration of photosynthesis, have been conserved. Landraces are a valuable source of genetic diversity and specific adaptation to local environmental conditions according to their place of origin. Evidence supports the hypothesis that landraces can provide sources of increased biomass and thousand kernel weight, both important traits for adaptation to tolerate drought and heat. Evaluation of wheat landraces stored in gene banks with highly beneficial untapped diversity and sources of stress adaptation, once characterized, should also be used for wheat improvement. Unified development of databases and promotion of data sharing among physiologists, pathologists, wheat quality scientists, national programmes, and breeders will greatly benefit wheat improvement for adaptation to climate change worldwide.


Assuntos
Adaptação Fisiológica/genética , Cruzamento/métodos , Mudança Climática , Variação Genética , Triticum/genética , Conservação dos Recursos Naturais
16.
J Exp Bot ; 65(21): 6167-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25246446

RESUMO

Identifying markers for physiological traits of proven value in breeding, especially ones that are consistent across environments with different patterns of stress, strengthens the toolkit to increase confidence in the value and delivery from physiological breeding. To identify markers relevant to drought adaptation, this review will highlight the importance of development and implementation of robust and repeatable phenotyping that is relevant to the different target drought types, and practical examples of managed environment facilities in Australia and Mexico are given. These facilities can be used as models to: (i) improve reliability and consistency of environments and genetic responses to the environment at a global scale; (ii) improve the capacity to deliver quantitative trait loci (QTLs) as user-friendly markers for enriching populations; and (iii) illustrate the use of populations with a narrow range of variation for phenology allowing the identification of QTLs for drought-adaptive traits. However, the importance of further optimizing phenology and plant height at a global scale is highlighted. Finally, the impact of physiological trait-based crossing is demonstrated and supports the need for urgent development of robust genetic markers.


Assuntos
Secas , Estudos de Associação Genética , Triticum/fisiologia , Água/fisiologia , Cruzamento , Marcadores Genéticos , Fenótipo
17.
Theor Appl Genet ; 127(4): 791-807, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24408378

RESUMO

KEY MESSAGE: A stable QTL that may be used in marker-assisted selection in wheat breeding programs was detected for yield, yield components and drought tolerance-related traits in spring wheat association mapping panel. Genome-wide association mapping has become a widespread method of quantitative trait locus (QTL) identification for many crop plants including wheat (Triticum aestivum L.). Its benefit over traditional bi-parental mapping approaches depends on the extent of linkage disequilibrium in the mapping population. The objectives of this study were to determine linkage disequilibrium decay rate and population structure in a spring wheat association mapping panel (n = 285-294) and to identify markers associated with yield and yield components, morphological, phenological, and drought tolerance-related traits. The study was conducted under fully irrigated and rain-fed conditions at Greeley, CO, USA and Melkassa, Ethiopia in 2010 and 2011 (five total environments). Genotypic data were generated using diversity array technology markers. Linkage disequilibrium decay rate extended over a longer genetic distance for the D genome (6.8 cM) than for the A and B genomes (1.7 and 2.0 cM, respectively). Seven subpopulations were identified with population structure analysis. A stable QTL was detected for grain yield on chromosome 2DS both under irrigated and rain-fed conditions. A multi-trait region significant for yield and yield components was found on chromosome 5B. Grain yield QTL on chromosome 1BS co-localized with harvest index QTL. Vegetation indices shared QTL with harvest index on chromosome 1AL and 5A. After validation in relevant genetic backgrounds and environments, QTL detected in this study for yield, yield components and drought tolerance-related traits may be used in marker-assisted selection in wheat breeding programs.


Assuntos
Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla , Umidade , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/genética , Cromossomos de Plantas , Marcadores Genéticos , Genoma de Planta/genética , Desequilíbrio de Ligação/genética , Modelos Genéticos , Fenótipo , Dinâmica Populacional , Característica Quantitativa Herdável , Chuva , Temperatura
18.
Metallomics ; 5(9): 1305-15, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23925371

RESUMO

Mercury (Hg) is a toxic metal that affects plant growth. Here the effect of Hg exposure on plant growth and leaf gas-exchange together with gene expression in roots is reported for barley. Hg was mainly accumulated in roots and only very small amounts were found in the shoots. Chlorophyll fluorescence and net photosynthesis were not affected by Hg. Nevertheless exposure to Hg reduced shoot and root growth, the shoot to root ratio, stomatal conductance, carbon isotope discrimination and expression of an aquaporin transcript, whereas abscisic acid related transcripts were over-expressed. These results suggested some degree of limitation to water uptake causing a moderate water stress when plants are exposed to Hg. Microarray (MapMan) analysis revealed changes in the transcription of genes involved in nitrogen metabolism, which were accompanied by decreased nitrogen concentrations in the shoots, together with an increase in transcripts associated with secondary metabolism, stress, inhibition of DNA synthesis/chromatin structure and cell organization elements. Moreover, Hg induced the expression of many transcripts known to be involved in the uptake, accumulation, transport and general responses to other heavy metals. It is concluded that barley is able to accumulate high amounts of Hg in roots through several transcriptional, metabolic and physiological adjustments.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/genética , Mercúrio/farmacologia , Raízes de Plantas/genética , Transcriptoma/efeitos dos fármacos , Aquaporinas/genética , Aquaporinas/metabolismo , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Mercúrio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Água/metabolismo
19.
Theor Appl Genet ; 126(4): 971-84, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23269228

RESUMO

Heat and drought adaptive quantitative trait loci (QTL) in a spring bread wheat population resulting from the Seri/Babax cross designed to minimize confounding agronomic traits have been identified previously in trials conducted in Mexico. The same population was grown across a wide range of environments where heat and drought stress are naturally experienced including environments in Mexico, West Asia, North Africa (WANA), and South Asia regions. A molecular genetic linkage map including 475 marker loci associated to 29 linkage groups was used for QTL analysis of yield, days to heading (DH) and to maturity (DM), grain number (GM2), thousand kernel weight (TKW), plant height (PH), canopy temperature at the vegetative and grain filling stages (CTvg and CTgf), and early ground cover. A QTL for yield on chromosome 4A was confirmed across several environments, in subsets of lines with uniform allelic expression of a major phenology QTL, but not independently from PH. With terminal stress, TKW QTL was linked or pleiotropic to DH and DM. The link between phenology and TKW suggested that early maturity would favor the post-anthesis grain growth periods resulting in increased grain size and yields under terminal stress. GM2 and TKW were partially associated with markers at different positions suggesting different genetic regulation and room for improvement of both traits. Prediction accuracy of yield was improved by 5 % when using marker scores of component traits (GM2 and DH) together with yield in multiple regression. This procedure may provide accumulation of more favorable alleles during selection.


Assuntos
Adaptação Biológica/genética , Clima , Hibridização Genética , Fenótipo , Locos de Características Quantitativas/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , África do Norte , Ásia , Mapeamento Cromossômico , Marcadores Genéticos/genética , México , Análise de Regressão
20.
J Exp Bot ; 63(10): 3789-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22412185

RESUMO

The green area displayed by a crop is a good indicator of its photosynthetic capacity, while chlorophyll retention or 'stay-green' is regarded as a key indicator of stress adaptation. Remote-sensing methods were tested to estimate these parameters in diverse wheat genotypes under different growing conditions. Two wheat populations (a diverse set of 294 advanced lines and a recombinant inbred line population of 169 sister lines derived from the cross between Seri and Babax) were grown in Mexico under three environments: drought, heat, and heat combined with drought. In the two populations studied here, a moderate heritable expression of stay-green was found-when the normalized difference vegetation index (NDVI) at physiological maturity was estimated using the regression of NDVI over time from the mid-stages of grain-filling to physiological maturity-and for the rate of senescence during the same period. Under heat and heat combined with drought environments, stay-green calculated as NDVI at physiological maturity and the rate of senescence, showed positive and negative correlations with yield, respectively. Moreover, stay-green calculated as an estimation of NDVI at physiological maturity and the rate of senescence regressed on degree days give an independent measurement of stay-green without the confounding effect of phenology. On average, in both populations under heat and heat combined with drought environments CTgf and stay-green variables accounted for around 30% of yield variability in multiple regression analysis. It is concluded that stay-green traits may provide cumulative effects, together with other traits, to improve adaptation under stress further.


Assuntos
Ecossistema , Triticum/química , Triticum/crescimento & desenvolvimento , Secas , Temperatura Alta , México , Fenótipo , Tecnologia de Sensoriamento Remoto , Estações do Ano , Triticum/genética , Triticum/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...