Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Nano Lett ; 24(25): 7609-7615, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38861682

RESUMO

Long-wave infrared (LWIR) imaging, or thermal imaging, is widely applied in night vision and security monitoring. However, the widespread use of LWIR imagers is impeded by their bulky size, considerable weight, and high cost. While flat meta-optics present a potential solution to these limitations, existing pure LWIR meta-optics face constraints such as severe chromatic or coma aberrations. Here, we introduce an approach utilizing large-scale hybrid meta-optics to address these challenges and demonstrate the achromatic, coma-corrected, and polarization-insensitive thermal imaging. The hybrid metalens doublet is composed of a metasurface corrector and a refractive lens, featuring a full field-of-view angle surpassing 20° within the 8-12 µm wavelength range. Employing this hybrid metalens doublet, we showcase high-performance thermal imaging capabilities both indoors and outdoors, effectively capturing ambient thermal radiation. The proposed hybrid metalens doublet holds considerable promise for advancing miniaturized, lightweight, and cost-effective LWIR optical imaging systems.

2.
Lab Chip ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845509

RESUMO

Point-of-care testing of "sample in, answer out" is urgently needed for communicable diseases. Recently, rapid nucleic acid tests for infectious diseases have been developed for use in resource-limited areas, but they require types of equipment in central laboratories and are poorly integrated. In this work, a portable centrifugal microfluidic testing system is developed, integrated with magnetic bead-based nucleic acid extraction, recombinase-assisted amplification and CRISPR-Cas13a detection. The system, with the advantage of its power-supplied active rotating chip and highly programable flow control through integrated addressable active thermally-triggered wax valves, has a rapid turnaround time within 45 min, requiring only one user step. All reagents are preloaded into the chip and can be automatically released. By exploiting a multichannel chip, it is capable of simultaneously detecting 10 infectious viruses with limits of detection of 1 copy per reaction and 5 copies per reaction in plasmid samples and mock plasma samples, respectively. The system was used to analyse clinical plasma samples with good consistency compared to laboratory-based molecular testing. Moreover, the generalizability of our device is reported by successfully testing nasopharyngeal swabs and whole blood samples. The portable device does not require the operation of professional technicians, making it an excellent assay for on-site testing.

3.
Biosens Bioelectron ; 261: 116505, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885536

RESUMO

Surface enhanced Raman spectroscopy (SERS) utilizes the fingerprint features of molecular vibrations to identify and detect substances. However, in traditional single focus excitation scenarios, its signal collection efficiency of the objective is restricted. Furthermore, the uneven distribution of samples on the SERS substrate would result in poor signal stability, while the excitation power is limited to avoid sample damage. SERS detection system always requires precise adjustment of focal length and spot size, making it difficult for point-of-care testing applications. Here, we proposed a SERS microfluidic chip with barium titanate microspheres array (BTMA) embedded using vacuum self-assembled hot-pressing method for SERS detection with simultaneous enhancement of sensitivity and stability. Due to photonic nano-jets and directional antenna effects, high index microspheres are perfect micro-lens for effective light focusing and signal collecting. The BTMA can not only disperse excitation beam into an array of focal points covering the target uniformly with very low signal fluctuation, but enlarge the power threshold for higher signal intensity. We conducted a proof-of-principle experiment on chip for the detection of bacteria with immuno-magnetic tags and immuno-SERS tags. Together with magnetic and ultrasonic operations, the target bacteria in the flow were evenly congregated on the focal plane of BTMA. It demonstrated a limit of detection of 5 cells/mL, excellent signal reproducibility (error∼4.84%), and excellent position tolerance of 500 µm in X-Y plane (error∼5.375%). It can be seen that BTMA-SERS microfluidic chip can effectively solve the contradiction between sensitivity and stability in SERS detection.

4.
Nano Lett ; 24(23): 7019-7024, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38808680

RESUMO

We present a secure and user-friendly ultraminiaturized anticounterfeiting labeling technique─the color-encoded physical unclonable nanotag. These nanotags consist of subwavelength spots formed by random combinations of multicolor quantum dots, which are fabricated using a cost-efficient printing method developed in this study. The nanotags support over 170,000 different colors and are inherently resistant to cloning. Moreover, their high brightness and color purity, owing to the quantum dots, ensure an ease of readability. Additionally, these nanotags can function as color-encrypted pixels, enabling the incorporation of labels (such as QR codes) into ultrasmall physically unclonable hidden tags with a resolution exceeding 100,000 DPI. The unique blend of compactness, flexibility, and security positions the color-encoded nanotag as a potent and versatile solution for next-generation anticounterfeiting applications.

5.
ACS Nano ; 18(20): 13049-13060, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723037

RESUMO

Compliant materials are crucial for stretchable electronics. Stretchable solids and gels have limitations in deformability and durability, whereas active liquids struggle to create complex devices. This study presents multifunctional yield-stress fluids as printable ink materials to construct stretchable electronic devices. Ionic nanocomposites comprise silica nanoparticles and ion liquids, while electrical nanocomposites use the natural oxidation of liquid metals to produce gallium oxide nanoflake additives. These nanocomposite inks can be printed on an elastomer substrate and stay in a solid state for easy encapsulation. However, their transition into a liquid state during stretching allows ultrahigh deformability up to the fracture strain of the elastomer. The ionic inks produce strain sensors with high stretchability and temperature sensors with high sensitivity of 7% °C-1. Smart gloves are further created by integrating these sensors with printed electrical interconnects, demonstrating bimodal detection of temperatures and hand gestures. The nanocomposite yield-stress fluids combine the desirable qualities of solids and liquids for stretchable devices and systems.

6.
Phys Rev Lett ; 132(15): 153801, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38683010

RESUMO

In this Letter, we explore the intersection of chirality and recently discovered toroidal spatiotemporal optical vortices (STOVs). We introduce "photonic conchs" theoretically as a new type of toroidal-like state exhibiting geometrical chirality, and experimentally observe these wave packets with controllable topological charges. Unlike toroidal STOVs, photonic conchs exhibit unique chirality-related dynamical evolution in free space and possess an orbital angular momentum correlated with all the dimensions of space-time. This research deepens our understanding of toroidal light states and potentially advances various fields by unveiling similar wave phenomena in a broader scope of physics systems, including acoustics and electronics.

7.
Opt Express ; 32(4): 5898-5907, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439305

RESUMO

Quantum ghost image technique utilizing position or momentum correlations between entangled photons can realize nonlocal reconstruction of the image of an object. In this work, based on polarization entanglement, we experimentally demonstrate quantum ghost imaging of vector images by using a geometric phase object. We also provide a corresponding theoretical analysis. Additionally, we offer a geometrical optics path explanation of ghost imaging for vector fields. The proposed strategy offers new insights into the fundamental development of ghost imaging and also holds great promise for developing complex structured ghost imaging techniques. Our work expanding the principle of ghost imaging to spatially varying vector beams will lead to interesting developments of this field.

8.
Nat Commun ; 15(1): 1108, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321000

RESUMO

The next generation of high-capacity, multi-task optical informatics requires sophisticated manipulation of multiple degrees of freedom (DoFs) of light, especially when they are coupled in a non-separable way. Vector beam, as a typical non-separable state between the spin and orbital angular momentum DoFs, mathematically akin to entangled qubits, has inspired multifarious theories and applications in both quantum and classical regimes. Although qubit rotation is a vital and ubiquitous operation in quantum informatics, its classical analogue is rarely studied. Here, we demonstrate the logical rotation of vectorial non-separable states via the uniform self-assembled chiral superstructures, with favorable controllability, high compactness and exemption from formidable alignment. Photonic band engineering of such 1D chiral photonic crystal renders the incident-angle-dependent evolution of the spatially-variant polarizations. The logical rotation angle of a non-separable state can be tuned in a wide range over 4π by this single homogeneous device, flexibly providing a set of distinguished logic gates. Potential applications, including angular motion tracking and proof-of-principle logic network, are demonstrated by specific configuration. This work brings important insight into soft matter photonics and present an elegant strategy to harness high-dimensional photonic states.

9.
Nat Commun ; 15(1): 1478, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368404

RESUMO

For classical waves, phase matching is vital for enabling efficient energy transfer in many scenarios, such as waveguide coupling and nonlinear optical frequency conversion. Here, we propose a temporal quasi-phase matching method and realize robust and complete acoustical energy transfer between arbitrarily detuned cavities. In a set of three cavities, A, B, and C, the time-varying coupling is established between adjacent elements. Analogy to the concept of stimulated Raman adiabatic passage, amplitudes of the two couplings are modulated as time-delayed Gaussian functions, and the couplings' signs are periodically flipped to eliminate temporal phase mismatching. As a result, robust and complete acoustic energy transfer from A to C is achieved. The non-reciprocal frequency conversion properties of our design are demonstrated. Our research takes a pivotal step towards expanding wave steering through time-dependent modulations and is promising to extend the frequency conversion based on state evolution in various linear Hermitian systems to nonlinear and non-Hermitian regimes.

10.
Light Sci Appl ; 13(1): 48, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355692

RESUMO

Endowing flexible and adaptable fiber devices with light-emitting capabilities has the potential to revolutionize the current design philosophy of intelligent, wearable interactive devices. However, significant challenges remain in developing fiber devices when it comes to achieving uniform and customizable light effects while utilizing lightweight hardware. Here, we introduce a mass-produced, wearable, and interactive photochromic fiber that provides uniform multicolored light control. We designed independent waveguides inside the fiber to maintain total internal reflection of light as it traverses the fiber. The impact of excessive light leakage on the overall illuminance can be reduced by utilizing the saturable absorption effect of fluorescent materials to ensure light emission uniformity along the transmission direction. In addition, we coupled various fluorescent composite materials inside the fiber to achieve artificially controllable spectral radiation of multiple color systems in a single fiber. We prepared fibers on mass-produced kilometer-long using the thermal drawing method. The fibers can be directly integrated into daily wearable devices or clothing in various patterns and combined with other signal input components to control and display patterns as needed. This work provides a new perspective and inspiration to the existing field of fiber display interaction, paving the way for future human-machine integration.

11.
ACS Nano ; 18(3): 2335-2345, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38189251

RESUMO

Stretchable sweat sensors have become a personalized wearable platform for continuous, noninvasive health monitoring through conformal integration with the human body. Typically, these devices are coupled with soft microfluidic systems to control sweat flow during advanced analysis processes. However, the implementation of these soft microfluidic devices is limited by their high fabrication costs and the need for skin adhesives to block natural perspiration. To overcome these limitations, a stretchable and smart wettable patch has been proposed for multiplexed in situ perspiration analysis. The patch includes a porous membrane in the form of a patterned microfoam and a nanofiber layer laminate, which extracts sweat selectively from the skin and directs its continuous flow across the device. The integrated electrochemical sensor array measures multiple biomarkers simultaneously such as pH, K+, and Na+. The soft sensing patch comprises compliant materials and structures that allow deformability of up to 50% strain, which enables a stable and seamless interface with the curvilinear human body. During continuous physical exercise, the device has demonstrated a special operating mode by actively accumulating sweat from the skin for multiplex electrochemical analysis of biomarker profiles. The smart wettable membrane provides an affordable solution to address the sampling challenges of in situ perspiration analysis.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Suor/química , Pele , Dispositivos Lab-On-A-Chip
12.
Nat Commun ; 15(1): 197, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172091

RESUMO

Branched flows occur ubiquitously in various wave systems, when the propagating waves encounter weak correlated scattering potentials. Here we report the experimental realization of electrical tuning of the branched flow of light using a nematic liquid crystal (NLC) system. We create the physical realization of the weakly correlated disordered potentials of light via the inhomogeneous orientations of the NLC. We demonstrate that the branched flow of light can be switched on and off as well as tuned continuously through the electro-optical properties of NLC film. We further show that the branched flow can be manipulated by the polarization of the incident light due to the optical anisotropy of the NLC film. The nature of the branched flow of light is revealed via the unconventional intensity statistics and the rapid fidelity decay along the light propagation. Our study unveils an excellent platform for the tuning of the branched flow of light which creates a testbed for fundamental physics and offers a new way for steering light.

13.
Light Sci Appl ; 13(1): 27, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263398

RESUMO

Liquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical. In this study, we present a visual sensing platform based on geometric phase encoding of stimuli-responsive cholesteric liquid crystal polymers that generates real-time visual patterns, rather than frequency changes. To demonstrate this platform's effectiveness, we used a humidity-responsive cholesteric liquid crystal polymer film encoded with a q-plate pattern, which revealed that humidity causes a shape change in the vortex beam reflected from the encoded cholesteric liquid crystal polymers. Moreover, we developed a prototype platform towards remote humidity monitoring benefiting from the high directionality and long-range transmission properties of laser beams carrying orbital angular momentum. Our approach provides a novel sensing platform for cholesteric liquid crystals-based sensors that offers promising practical applications. The ability to generate recognizable sensing signals through visual patterns offers a new level of practicality in the sensing field with stimuli-responsive cholesteric liquid crystals. This platform might have significant implications for a broad readership and will be of interest to researchers working in the field of photonics and sensing technology.

14.
Angew Chem Int Ed Engl ; 63(12): e202319536, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38265637

RESUMO

Achieving circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with a high luminescent dissymmetry factor (glum ) is crucial for diverse optoelectronic applications. In particular, dynamically controlling the dissymmetry factor of CP-OURTP can profoundly advance these applications, but it is still unprecedented. This study introduces an effective strategy to achieve photoirradiation-driven chirality regulation in a bilayered structure film, which consists of a layer of soft helical superstructure incorporated with a light-driven molecular motor and a layer of room-temperature phosphorescent (RTP) polymer. The prepared bilayered film exhibits CP-OURTP with an emission lifetime of 805 ms and a glum value up to 1.38. Remarkably, the glum value of the resulting CP-OURTP film can be reversibly controlled between 0.6 and 1.38 over 20 cycles by light irradiation, representing the first example of dynamically controlling the glum in CP-OURTP.

15.
Adv Mater ; 36(7): e2306834, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37633310

RESUMO

Long-lived room-temperature phosphorescence (RTP) of organic materials holds a significant potential for optical information. Circularly polarized organic ultralong room-temperature phosphorescence (CP-OURTP) with extremely high dissymmetry factor (glum ) values is even highly demanded and considerably challenging. Here, an effective strategy is introduced to realize CP-OURTP with an emission decay time of 735 ms and a glum value up to 1.49, which exceeds two orders of magnitude larger than previous records, through a system composed of RTP polymers and chiral helical superstructures. The system exhibits excellent stability under multiple cycles of photoirradiation and thermal treatment, and is further employed for information encryption based on optical multiplexing. The results are anticipated to lay the foundation for the development of CP-OURTP materials in advanced photonic applications.

16.
Nano Lett ; 24(1): 140-147, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37982545

RESUMO

Optical spatial differentiation is a typical operation of optical analog computing and can single out the edge to accelerate the subsequent image processing, but in some cases, overall information about the object needs to be presented synchronously. Here, we propose a multifunctional optical device based on structured chiral photonic crystals for the simultaneous realization of real-time dual-mode imaging. This optical differentiator is realized by self-organized large-birefringence cholesteric liquid crystals, which are photopatterned to encode with a special integrated geometric phase. Two highly spin-selective modes of second-order spatial differentiation and bright-field imaging are exhibited in the reflected and transmitted directions, respectively. Two-dimensional edges of both amplitude and phase objects have been efficiently enhanced in high contrast and the broadband spectrum. This work extends the ingenious building of hierarchical chiral nanostructures, enriches their applications in the emerging frontiers of optical computing, and boasts considerable potential in machine vision and microscopy.

17.
Nano Lett ; 23(23): 11174-11183, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047765

RESUMO

Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.

18.
Sci Rep ; 13(1): 8169, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210399

RESUMO

The motional consensus of self-propelled particles is studied in both noise-free cases and cases with noise by the standard Vicsek model. In the absence of noise, we propose a simple method, using grid-based technique and defining the normalized variance of the ratio of the number of particles locally to globally, to quantitatively study the movement pattern of the system by the spatial distribution of the particles and the degree of aggregation of particles. It is found that the weaker correlation of velocity leads to larger degree of aggregation of the particles. In the cases with noise, we quantify the competition between velocity alignment and noise by considering the difference of the variety of order parameter result from the velocity alignment and noise. The variation of the effect of noise on motional consensus is non-monotonic for the change of the probability distribution of noise from uniform to non-uniform. Our results may be useful and encourage further efforts in exploring the basic principles of collective motion.

19.
Adv Mater ; 35(33): e2301714, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158735

RESUMO

Chiral nanostructures featuring the unique optical activity have attracted broad interests from scientists. The typical polarization rotation of transmitted light is usually wavelength dependent, namely the optical rotatory dispersion. However, its dynamic tunability and intriguing collaboration with other optical degrees of freedom, especially the highly desired spatial phase, remain elusive. Herein, a bi-chiral liquid crystalline nanostructure is proposed to induce an effect called reflective optical rotatory dispersion. Thanks to the independent manipulation of opposite-handed self-assembled helices, spin-decoupled geometric phases are induced simultaneously. These naturally unite multi-dimensions of light and versatile stimuli-responsiveness of soft matter. Dynamic holography driven by heat and electric field is demonstrated with a fast response. For polychromatic light, the hybrid multiplexed holographic painting is exhibited with fruitful tunable colors. This study extends the ingenious construction of soft chiral superstructures, presents an open-ended strategy for on-demand light control, and enlightens advanced applications of display, optical computing, and communication.

20.
Phys Rev Lett ; 130(7): 078101, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36867811

RESUMO

Topological defects usually emerge and vary during the phase transition of ordered systems. Their roles in thermodynamic order evolution keep being the frontier of modern condensed matter physics. Here, we study the generations of topological defects and their guidance on the order evolution during the phase transition of liquid crystals (LCs). With a given preset photopatterned alignment, two different types of topological defects are achieved depending on the thermodynamic process. Because of the memory effect of LC director field across the Nematic-Smectic (N-S) phase transition, a stable array of toric focal conic domains (TFCDs) and a frustrated one are generated in S phase, respectively. The frustrated one transfers to a metastable TFCD array with a smaller lattice constant, and further changes to a crossed-walls type N state due to the inheritance of orientational order. A free energy on temperature diagram and corresponding textures vividly describe the phase transition process and the roles of topological defects in the order evolution across the N-S phase transition. This Letter reveals the behaviors and mechanisms of topological defects on order evolution during phase transitions. It paves a way for investigating topological defect guided order evolution which is ubiquitous in soft matter and other ordered systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...