Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1181761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287977

RESUMO

Background: Neutrophil Extracellular Traps (NETs) are key mediators of immunothrombotic mechanisms and defective clearance of NETs from the circulation underlies an array of thrombotic, inflammatory, infectious, and autoimmune diseases. Efficient NET degradation depends on the combined activity of two distinct DNases, DNase1 and DNase1-like 3 (DNase1L3) that preferentially digest double-stranded DNA (dsDNA) and chromatin, respectively. Methods: Here, we engineered a dual-active DNase with combined DNase1 and DNase1L3 activities and characterized the enzyme for its NET degrading potential in vitro. Furthermore, we produced a mouse model with transgenic expression of the dual-active DNase and analyzed body fluids of these animals for DNase1 and DNase 1L3 activities. We systematically substituted 20 amino acid stretches in DNase1 that were not conserved among DNase1 and DNase1L3 with homologous DNase1L3 sequences. Results: We found that the ability of DNase1L3 to degrade chromatin is embedded into three discrete areas of the enzyme's core body, not the C-terminal domain as suggested by the state-of-the-art. Further, combined transfer of the aforementioned areas of DNase1L3 to DNase1 generated a dual-active DNase1 enzyme with additional chromatin degrading activity. The dual-active DNase1 mutant was superior to native DNase1 and DNase1L3 in degrading dsDNA and chromatin, respectively. Transgenic expression of the dual-active DNase1 mutant in hepatocytes of mice lacking endogenous DNases revealed that the engineered enzyme was stable in the circulation, released into serum and filtered to the bile but not into the urine. Conclusion: Therefore, the dual-active DNase1 mutant is a promising tool for neutralization of DNA and NETs with potential therapeutic applications for interference with thromboinflammatory disease states.


Assuntos
Endodesoxirribonucleases , Armadilhas Extracelulares , Camundongos , Animais , Endodesoxirribonucleases/genética , Armadilhas Extracelulares/metabolismo , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Cromatina , DNA/metabolismo , Desoxirribonucleases/genética
2.
J Allergy Clin Immunol ; 152(5): 1218-1236.e9, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37301409

RESUMO

BACKGROUND: Patients with hereditary angioedema experience recurrent, sometimes life-threatening, attacks of edema. It is a rare genetic disorder characterized by genetic and clinical heterogenicity. Most cases are caused by genetic variants in the SERPING1 gene leading to plasma deficiency of the encoded protein C1 inhibitor (C1INH). More than 500 different hereditary angioedema-causing variants have been identified in the SERPING1 gene, but the disease mechanisms by which they result in pathologically low C1INH plasma levels remain largely unknown. OBJECTIVES: The aim was to describe trans-inhibitory effects of full-length or near full-length C1INH encoded by 28 disease-associated SERPING1 variants. METHODS: HeLa cells were transfected with expression constructs encoding the studied SERPING1 variants. Extensive and comparative studies of C1INH expression, secretion, functionality, and intracellular localization were carried out. RESULTS: Our findings characterized functional properties of a subset of SERPING1 variants allowing the examined variants to be subdivided into 5 different clusters, each containing variants sharing specific molecular characteristics. For all variants except 2, we found that coexpression of mutant and normal C1INH negatively affected the overall capacity to target proteases. Strikingly, for a subset of variants, intracellular formation of C1INH foci was detectable only in heterozygous configurations enabling simultaneous expression of normal and mutant C1INH. CONCLUSIONS: We provide a functional classification of SERPING1 gene variants suggesting that different SERPING1 variants drive the pathogenicity through different and in some cases overlapping molecular disease mechanisms. For a subset of gene variants, our data define some types of hereditary angioedema with C1INH deficiency as serpinopathies driven by dominant-negative disease mechanisms.


Assuntos
Angioedemas Hereditários , Proteína Inibidora do Complemento C1 , Humanos , Proteína Inibidora do Complemento C1/genética , Proteína Inibidora do Complemento C1/metabolismo , Angioedemas Hereditários/genética , Células HeLa , Endopeptidases , Peptídeo Hidrolases
3.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108326

RESUMO

Procoagulant platelets are associated with an increased risk for thrombosis. Procoagulant platelet formation is mediated via Cyclophilin D (CypD) mediated opening of the mitochondrial permeability transition pore. Inhibiting CypD activity could therefore be an interesting approach to limiting thrombosis. In this study, we investigated the potential of two novel, non-immunosuppressive, non-peptidic small-molecule cyclophilin inhibitors (SMCypIs) to limit thrombosis in vitro, in comparison with the cyclophilin inhibitor and immunosuppressant Cyclosporin A (CsA). Both cyclophilin inhibitors significantly decreased procoagulant platelet formation upon dual-agonist stimulation, shown by a decreased phosphatidylserine (PS) exposure, as well as a reduction in the loss of mitochondrial membrane potential. Furthermore, the SMCypIs potently reduced procoagulant platelet-dependent clotting time, as well as fibrin formation under flow, comparable to CsA. No effect was observed on agonist-induced platelet activation measured by P-selectin expression, as well as CypA-mediated integrin αIIbß3 activation. Importantly, whereas CsA increased Adenosine 5'-diphosphate (ADP)-induced platelet aggregation, this was unaffected in the presence of the SMCypIs. We here demonstrate specific cyclophilin inhibition does not affect normal platelet function, while a clear reduction in procoagulant platelets is observed. Reducing platelet procoagulant activity by inhibiting cyclophilins with SMCypIs forms a promising strategy to limit thrombosis.


Assuntos
Ciclofilinas , Trombose , Camundongos , Animais , Humanos , Ciclofilinas/metabolismo , Camundongos Knockout , Plaquetas/metabolismo , Ativação Plaquetária , Trombose/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo
4.
J Thromb Haemost ; 21(5): 1109-1111, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121620
5.
J Thromb Haemost ; 21(8): 2078-2088, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36990155

RESUMO

BACKGROUND: Patients with liver diseases are in a hypercoagulable state, as evidenced by enhanced in vitro thrombin generating capacity and elevated plasma levels of markers of in vivo thrombin generation. However, it is unknown by which mechanism in vivo activation of coagulation occurs. OBJECTIVES: We aimed to clarify the mechanisms underlying enhanced in vivo thrombin generation to provide a rationale for targeted anticoagulant therapy. PATIENTS/METHODS: Overall, 191 patients diagnosed with stable or acutely decompensated cirrhosis, acute liver failure or injury, acute-on-chronic liver failure, or sepsis without underlying chronic liver disease were recruited from King's College Hospital, London, from 2017 to 2021 and compared with reference values of 41 healthy controls. We measured levels of markers of in vivo activation of coagulation and activation of the intrinsic and extrinsic pathways, their respective zymogens, and natural anticoagulants. RESULTS: Thrombin-antithrombin complexes, prothrombin fragment 1+2 (F1+2), and D-dimer levels were increased in acute and chronic liver disease, proportional to disease severity. Plasma levels of free activated factor XII (FXIIa), C1-esterase-inhibitor (C1inh)-FXIIa, C1inh-factor XI, C1inh-plasma kallikrein, factor-VIIa-antithrombin-complexes, and activated FVII were reduced in acute and chronic liver disease, even after adjusting for zymogen levels, which were also substantially reduced. Natural anticoagulants antithrombin and protein C were profoundly reduced in liver patients. CONCLUSIONS: This study provides evidence of enhanced thrombin generation in liver disease without detectable activation of the intrinsic or extrinsic pathway. We propose that defective anticoagulant mechanisms highly amplify the low-grade activation of coagulation by either pathway.


Assuntos
Hepatopatias , Trombina , Humanos , Trombina/metabolismo , Coagulação Sanguínea , Anticoagulantes/uso terapêutico , Anticoagulantes/farmacologia , Hepatopatias/diagnóstico , Antitrombinas/farmacologia
6.
Thromb Haemost ; 123(8): 808-839, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36913975

RESUMO

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The "coagulome" as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Humanos , Anticoagulantes/uso terapêutico , Coagulação Sanguínea , Hemostasia , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Hemorragia/tratamento farmacológico
7.
ASAIO J ; 69(5): 438-444, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730294

RESUMO

Thrombus formation is a common complication during left ventricular assist device (LVAD) therapy, despite anticoagulation with vitamin K antagonists (VKA) and a platelet inhibitor. Plasma levels of markers for primary and secondary hemostasis and contact activation were determined before LVAD implantation and 6 and 12 months thereafter in 37 adults with end-stage heart failure. Twelve patients received a HeartMate 3, 7 patients received a HeartWare, and 18 patients received a HeartMate II. At baseline, patients had elevated plasma levels of the platelet protein upon activation, ß-thromboglobulin, and active von Willebrand factor in thrombogenic state (VWFa), which remained high after LVAD implantation. Von Willebrand factor levels and VWF activity were elevated at baseline but normalized 12 months after LVAD implantation. High D -dimer plasma levels, at baseline, remained elevated after 12 months. This was associated with an increase in plasma thrombin-antithrombin-complex levels and plasma levels of contact activation marker-cleaved H-kininogen after LVAD implantation. Considering these results it could be concluded that LVAD patients show significant coagulation activation despite antithrombotic therapy, which could explain why patients are at high risk for LVAD-induced thrombosis. Continuous low-grade systemic platelet activation and contact activation may contribute to prothrombotic effects of LVAD.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Trombose , Adulto , Humanos , Fator de von Willebrand/metabolismo , Coração Auxiliar/efeitos adversos , Hemostasia , Coagulação Sanguínea , Trombose/etiologia , Insuficiência Cardíaca/terapia
8.
Thromb Haemost ; 123(2): 177-185, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36167333

RESUMO

Medical device associated thrombosis is an important clinical problem. This type of thrombosis can result from Factor XII (FXII) binding to non-natural surface materials and subsequent activation of the contact pathway. This drives the development of new therapeutic strategies to block this pathway and information on the structural properties of FXII should catalyse this quest. Presently, there is no publicly available crystal structure of full-length FXII. However, the AlphaFold Protein Structure Database provides a model structure. We here explore this model in combination with previous structure-function studies to identify opportunities for selective pharmacological blockade of the contribution of FXII in medical device associated thrombosis. Previous studies demonstrated that FXII activation is dependent on molecular cleavage after R353. We subsequently proposed that protein conformation protects this cleavage site to ensure zymogen quiescence and prevent inappropriate FXII activation. The AlphaFold model shows that a small loop containing R353 indeed is buried in the globular molecule. This is the result of intra-molecular interactions between the (N-terminal) Fibronectin type II domain, (central) kringle and (C-terminal) protease domain, in a structure that resembles a three-point harness. Furthermore, this interaction pushes the intermediate domains, as well as the flexible proline-rich region (PRR), outward while encapsulating R353 in the molecule. The outward directed positively charged patches are likely to be involved in binding to anionic surfaces. The binding of FXII to surfaces (and several monoclonal antibodies) acccelerates its activation by inducing conformational changes. For prevention of medical device associated thrombosis, it is therefore important to target the surface binding sites of FXII without causing structural changes.


Assuntos
Fator XII , Trombose , Humanos , Fator XII/metabolismo , Coagulação Sanguínea , Precursores Enzimáticos/química , Sítios de Ligação , Fator XIIa/metabolismo
9.
Front Cardiovasc Med ; 9: 1008410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518684

RESUMO

Calibrated Automated Thrombography (CAT) is a versatile and sensitive method for analyzing coagulation reactions culminating in thrombin generation (TG). Here, we present a CAT method for analyzing TG in murine whole blood by adapting the CAT assay used for measuring TG in human plasma. The diagnostically used artificial and physiologic factor XII (FXII) contact activators kaolin, ellagic acid and polyphosphate (polyP) stimulated TG in murine blood in a dose-dependent manner resulting in a gradual increase in endogenous thrombin potential and peak thrombin, with shortened lag times and times to peak. The activated FXII inhibitor rHA-Infestin-4 and direct oral anticoagulants (DOACs) interfered with TG triggered by kaolin, ellagic acid and polyP and TG was completely attenuated in blood of FXII- (F12 -/-) and FXI-deficient (F11 -/-) mice. Moreover, reconstitution of blood from F12 -/- mice with human FXII restored impaired contact-stimulated TG. HEK293 cell-purified polyP also initiated FXII-driven TG in mouse whole blood and addition of the selective inhibitor PPX_Δ12 ablated natural polyP-stimulated TG. In conclusion, the data provide a method for analysis of contact activation-mediated TG in murine whole blood. As the FXII-driven intrinsic pathway of coagulation has emerged as novel target for antithrombotic agents that are validated in mouse thrombosis and bleeding models, our novel assay could expedite therapeutic drug development.

11.
Res Pract Thromb Haemost ; 6(6): e12809, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36178455

RESUMO

Background: Thrombosis is a frequent and severe complication in patients with coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Lupus anticoagulant (LA) is a strong acquired risk factor for thrombosis in various diseases and is frequently observed in patients with COVID-19. Whether LA is associated with thrombosis in patients with severe COVID-19 is currently unclear. Objective: To investigate if LA is associated with thrombosis in critically ill patients with COVID-19. Patients/Methods: The presence of LA and other antiphospholipid antibodies was assessed in patients with COVID-19 admitted to the ICU. LA was determined with dilute Russell's viper venom time (dRVVT) and LA-sensitive activated partial thromboplastin time (aPTT) reagents. Results: Of 169 patients with COVID-19, 116 (69%) tested positive for at least one antiphospholipid antibody upon admission to the ICU. Forty (24%) patients tested positive for LA; of whom 29 (17%) tested positive with a dRVVT, 19 (11%) tested positive with an LA-sensitive aPTT, and 8 (5%) tested positive on both tests. Fifty-eight (34%) patients developed thrombosis after ICU admission. The odds ratio (OR) for thrombosis in patients with LA based on a dRVVT was 2.5 (95% confidence interval [CI], 1.1-5.7), which increased to 4.5 (95% CI, 1.4-14.3) in patients at or below the median age in this study (64 years). LA positivity based on a dRVVT or LA-sensitive aPTT was only associated with thrombosis in patients aged less than 65 years (OR, 3.8; 95% CI, 1.3-11.4) and disappeared after adjustment for C-reactive protein. Conclusion: Lupus anticoagulant on admission is strongly associated with thrombosis in critically ill patients with COVID-19, especially in patients aged less than 65 years.

12.
Blood ; 140(26): 2844-2848, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35960811

RESUMO

Recombinant human tissue plasminogen activator (rh-tPA) is an important thrombolytic agent for treatment of acute ischemic stroke. It requires fibrin binding for plasminogen activation. In contrast, Microlyse, a novel thrombolytic agent, requires von Willebrand factor (VWF) binding for plasminogen activation. We compared rh-tPA with Microlyse, administered 20 minutes after inducing thrombosis, in 2 randomized blinded acute ischemic stroke mouse models. Thrombosis was induced in the middle cerebral artery with different experimental triggers. Where thrombin infusion generates fibrin-rich thrombi, topical FeCl3 application generates platelet-rich thrombi. In the fibrin-rich model, both rh-tPA and Microlyse increased cortical reperfusion (determined by laser speckle imaging) 10 minutes after therapy administration (35.8 ± 17.1%; P = .001 39.3 ± 13.1%; P < .0001; 15.6 ± 7.5%, respectively, vs vehicle). In addition, both thrombolytic agents reduced cerebral lesion volume (determined by magnetic resonance imaging) after 24 hours (18.9 ± 11.2 mm3; P = .033; 16.1 ± 13.9 mm3; P = .018; 26.6 ± 5.6 mm3, respectively, vs vehicle). In the platelet-rich model, neither rh-tPA nor Microlyse increased cortical reperfusion 10 minutes after therapy (7.6 ± 8.8%; P = .216; 16.3 ± 13.9%; P = .151; 10.1 ± 7.9%, respectively, vs vehicle). However, Microlyse, but not rh-tPA, decreased cerebral lesion volumes (13.9 ± 11.4 mm3; P < .001; 23.6 ± 11.1 mm3; P = .188; 30.3 ± 10.9 mm3, respectively, vs vehicle). These findings support broad applicability of Microlyse in ischemic stroke, irrespective of the thrombus composition.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Tromboembolia , Trombose , Camundongos , Humanos , Animais , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Fator de von Willebrand/uso terapêutico , Fibrina/metabolismo , Terapia Trombolítica , Plasminogênio/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
13.
Nat Nanotechnol ; 17(9): 1004-1014, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851383

RESUMO

Targeted drug delivery to disease-associated activated neutrophils can provide novel therapeutic opportunities while avoiding systemic effects on immune functions. We created a nanomedicine platform that uniquely utilizes an α1-antitrypsin-derived peptide to confer binding specificity to neutrophil elastase on activated neutrophils. Surface decoration with this peptide enabled specific anchorage of nanoparticles to activated neutrophils and platelet-neutrophil aggregates, in vitro and in vivo. Nanoparticle delivery of a model drug, hydroxychloroquine, demonstrated significant reduction of neutrophil activities in vitro and a therapeutic effect on murine venous thrombosis in vivo. This innovative approach of cell-specific and activation-state-specific targeting can be applied to several neutrophil-driven pathologies.


Assuntos
Elastase de Leucócito , Deficiência de alfa 1-Antitripsina , Animais , Humanos , Hidroxicloroquina/farmacologia , Elastase de Leucócito/metabolismo , Camundongos , Nanomedicina , Neutrófilos
15.
J Thromb Haemost ; 20(6): 1412-1420, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316570

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 infection is associated with an increased incidence of thrombosis. OBJECTIVES: By studying the fibrin network structure of coronavirus disease 2019 (COVID-19) patients, we aimed to unravel pathophysiological mechanisms that contribute to this increased risk of thrombosis. This may contribute to optimal prevention and treatment of COVID-19 related thrombosis. PATIENTS/METHODS: In this case-control study, we collected plasma samples from intensive care unit (ICU) patients with COVID-19, with and without confirmed thrombosis, between April and December 2020. Additionally, we collected plasma from COVID-19 patients admitted to general wards without thrombosis, from ICU patients with pneumococcal infection, and from healthy controls. Fibrin fiber diameters and fibrin network density were quantified in plasma clots imaged with stimulated emission depletion microscopy and confocal microscopy. Finally, we determined the sensitivity to fibrinolysis. RESULTS: COVID-19 ICU patients (n = 37) and ICU patients with pneumococcal disease (n = 7) showed significantly higher fibrin densities and longer plasma clot lysis times than healthy controls (n = 7). No differences were observed between COVID-19 ICU patients with and without thrombosis, or ICU patients with pneumococcal infection. At a second time point, after diagnosis of thrombosis or at a similar time point in patients without thrombosis, we observed thicker fibers and longer lysis times in COVID-19 ICU patients with thrombosis (n = 19) than in COVID-19 ICU patients without thrombosis (n = 18). CONCLUSIONS: Our results suggest that severe COVID-19 is associated with a changed fibrin network structure and decreased susceptibility to fibrinolysis. Because these changes were not exclusive to COVID-19 patients, they may not explain the increased thrombosis risk.


Assuntos
COVID-19 , Infecções Pneumocócicas , Trombose , Estudos de Casos e Controles , Fibrina , Tempo de Lise do Coágulo de Fibrina , Fibrinólise/fisiologia , Humanos , Unidades de Terapia Intensiva , Infecções Pneumocócicas/complicações
16.
J Thromb Haemost ; 20(5): 1213-1222, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170225

RESUMO

BACKGROUND: Thrombomodulin on endothelial cells can form a complex with thrombin. This complex has both anticoagulant properties, by activating protein C, and clot-protective properties, by activating thrombin-activatable fibrinolysis inhibitor (TAFI). Activated TAFI (TAFIa) inhibits plasmin-mediated fibrinolysis. OBJECTIVES: TAFIa inhibition is considered a potential antithrombotic strategy. So far, this goal has been pursued by developing compounds that directly inhibit TAFIa. In contrast, we here describe variable domain of heavy-chain-only antibody (VhH) clone 1 that inhibits TAFI activation by targeting human thrombomodulin. METHODS: Two llamas (Lama Glama) were immunized, and phage display was used to select VhH anti-thrombomodulin (TM) clone 1. Affinity was determined with surface plasmon resonance and binding to native TM was confirmed with flow cytometry. Clone 1 was functionally assessed by competition, clot lysis, and thrombin generation assays. Last, the effect of clone 1 on tPA-mediated fibrinolysis in human whole blood was investigated in a microfluidic fibrinolysis model. RESULTS: VhH anti-TM clone 1 bound recombinant TM with a binding affinity of 1.7 ± 0.4 nM and showed binding to native TM. Clone 1 competed with thrombin for binding to TM and attenuated TAFI activation in clot lysis assays and protein C activation in thrombin generation experiments. In a microfluidic fibrinolysis model, inhibition of TM with clone 1 fully prevented TAFI activation. DISCUSSION: We have developed VhH anti-TM clone 1, which inhibits TAFI activation and enhances tPA-mediated fibrinolysis under flow. Different from agents that directly target TAFIa, our strategy should preserve direct TAFI activation via thrombin.


Assuntos
Carboxipeptidase B2 , Carboxipeptidase B2/metabolismo , Células Clonais/metabolismo , Células Endoteliais/metabolismo , Fibrinólise , Humanos , Proteína C/metabolismo , Trombina/metabolismo , Trombomodulina/química
17.
J Thromb Haemost ; 20(5): 1206-1212, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150462

RESUMO

BACKGROUND: Pulmonary embolism (PE) occurs in one-third of critically-ill COVID-19 patients. Although prior studies identified several pathways contributing to thrombogenicity, it is unknown whether this is COVID-19-specific or also occurs in ARDS patients with another infection. OBJECTIVE: To compare pathway activity among patients having COVID-19 with PE (C19PE+), COVID-19 without PE (C19PE-), and influenza-associated ARDS (IAA) using a targeted proteomics approach. METHODS: We exploited an existing biorepository containing daily plasma samples to carefully match C19PE+ cases to C19PE- and IAA controls on mechanical ventilation duration, PEEP, FiO2, and cardiovascular-SOFA (n = 15 per group). Biomarkers representing various thrombosis pathways were measured using proximity extension- and ELISA-assays. Summed z-scores of individual biomarkers were used to represent total pathway activity. RESULTS: We observed no relevant between-group differences among 22 biomarkers associated with activation of endothelium, platelets, complement, coagulation, fibrinolysis or inflammation, except sIL-1RT2 and sST2, which were lower in C19PE- than IAA (log2-Foldchange -0.67, p = .022 and -1.78, p = .022, respectively). However, total pathway analysis indicated increased activation of endothelium (z-score 0.2 [-0.3-1.03] vs. 0.98 [-2.5--0.3], p = .027), platelets (1.0 [-1.3-3.0] vs. -3.3 [-4.1--0.6], p = .023) and coagulation (0.8 [-0.5-2.0] vs. -1.0 [-1.6-1.0], p = .023) in COVID-19 patients (C19PE+/C19PE- groups combined) compared to IAA. CONCLUSION: We observed only minor differences between matched C19PE+, C19PE-, and IAA patients, which suggests individual biomarkers mostly reflect disease severity. However, analysis of total pathway activity suggested upregulation of some distinct processes in COVID-19 could be etiologically related to increased PE-risk.


Assuntos
COVID-19 , Influenza Humana , Embolia Pulmonar , Síndrome do Desconforto Respiratório , Trombose , Biomarcadores , COVID-19/complicações , Humanos , Influenza Humana/complicações , Influenza Humana/diagnóstico , Proteômica , Embolia Pulmonar/diagnóstico , SARS-CoV-2
18.
J Mol Med (Berl) ; 100(4): 555-568, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35064792

RESUMO

The Coronavirus disease 2019 (COVID-19) pandemic is overwhelming the healthcare systems. Identification of systemic reactions underlying COVID-19 will lead to new biomarkers and therapeutic targets for monitoring and early intervention in this viral infection. We performed targeted metabolomics covering up to 630 metabolites within several key metabolic pathways in plasma samples of 20 hospitalized COVID-19 patients and 37 matched controls. Plasma metabolic signatures specifically differentiated severe COVID-19 from control patients. The identified metabolic signatures indicated distinct alterations in both lipid and amino acid metabolisms in COVID-19 compared to control patient plasma. Systems biology-based analyses identified sphingolipid, tryptophan, tyrosine, glutamine, arginine, and arachidonic acid metabolism as mostly impacted pathways in COVID-19 patients. Notably, gamma-aminobutyric acid (GABA) was significantly reduced in COVID-19 patients and GABA plasma levels allowed for stratification of COVID-19 patients with high sensitivity and specificity. The data reveal large metabolic disturbances in COVID-19 patients and suggest use of GABA as potential biomarker and therapeutic target for the infection.


Assuntos
COVID-19 , Biomarcadores , Humanos , Lipídeos , Metabolômica , Pandemias , Triptofano
19.
J Thromb Haemost ; 20(2): 353-365, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653316

RESUMO

BACKGROUND: Occlusive thrombi are not homogeneous in composition. The core of a thrombus is rich in activated platelets and fibrin while the outer shell contains resting platelets. This core is inaccessible to plasma proteins. We produced a fusion protein (targeted SERPIN-TaSER), consisting of a function-blocking VH H against glycoprotein Ibα (GPIbα) and a thrombin-inhibiting serine protease inhibitor (SERPIN; α1-antitrypsin 355 AIAR358 ) to interfere with platelet-driven thrombin formation. AIM: To evaluate the antithrombotic properties of TaSER. METHODS: Besides TaSER, we generated three analogous control variants with either a wild-type antitrypsin subunit, a non-targeting control VH H, or their combination. We investigated TaSER and controls in protease activity assays, (platelet-dependent) thrombin generation assays, and by western blotting. The effects of TaSER on platelet activation and von Willebrand factor (VWF) binding were studied by fluorescence-activated cell sorting, in agglutination studies, and in ATP secretion experiments. We studied the influence of TaSER in whole blood (1) on platelet adhesion on VWF, (2) aggregate formation on collagen, and (3) thrombus formation (after recalcification) on collagen and tissue factor. RESULTS: TaSER binds platelets and inhibits thrombin activity on the platelet surface. It blocks VWF binding and disassembles platelet agglutinates. TaSER delays tissue factor-triggered thrombin generation and ATP secretion in platelet-rich plasma in a targeted manner. In flow studies, TaSER interferes with platelet adhesion and aggregate formation due to GPIbα blockade and limits thrombus formation due to targeted inhibition of platelet-dependent thrombin activity. CONCLUSION: The synergy between the individual properties of TaSER makes it a highly effective antithrombotic agent with possible clinical implications.


Assuntos
Fibrinolíticos , Serpinas , Plaquetas/metabolismo , Fibrinolíticos/farmacologia , Humanos , Adesividade Plaquetária , Serpinas/metabolismo , Fator de von Willebrand/metabolismo
20.
Blood ; 139(4): 597-607, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34752601

RESUMO

Thrombotic microangiopathies are hallmarked by attacks of disseminated microvascular thrombosis. In thrombotic thrombocytopenic purpura (TTP), this is caused by a rise in thrombogenic ultra-large von Willebrand factor (VWF) multimers because of ADAMTS13 deficiency. We previously reported that systemic plasminogen activation is therapeutic in a TTP mouse model. In contrast to its natural activators (ie, tissue plasminogen activator and urokinase plasminogen activator [uPA]), plasminogen can directly bind to VWF. For optimal efficacy and safety, we aimed to focus and accelerate plasminogen activation at sites of microvascular occlusion. We here describe the development and characterization of Microlyse, a fusion protein consisting of a high-affinity VHH targeting the CT/CK domain of VWF and the protease domain of uPA, for localized plasminogen activation on microthrombi. Microlyse triggers targeted destruction of platelet-VWF complexes by plasmin on activated endothelial cells and in agglutination studies. At equal molar concentrations, Microlyse degrades microthrombi sevenfold more rapidly than blockade of platelet-VWF interactions with a bivalent humanized VHH (caplacizumab*). Finally, Microlyse attenuates thrombocytopenia and tissue damage (reflected by increased plasma lactate dehydrogenase activity, as well as PAI-1 and fibrinogen levels) more efficiently than caplacizumab* in an ADAMTS13-/- mouse model of TTP, without affecting hemostasis in a tail-clip bleeding model. These findings show that targeted thrombolysis of VWF by Microlyse is an effective strategy for the treatment of TTP and might hold value for other forms of VWF-driven thrombotic disease.


Assuntos
Fibrinolíticos/uso terapêutico , Microangiopatias Trombóticas/tratamento farmacológico , Fator de von Willebrand/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Púrpura Trombocitopênica Trombótica/tratamento farmacológico , Púrpura Trombocitopênica Trombótica/metabolismo , Proteínas Recombinantes de Fusão/uso terapêutico , Microangiopatias Trombóticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...