Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Lipid Res ; : 100563, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763493

RESUMO

Depletion or mutations of key proteins for mitochondrial fusion, like optic atrophy 1 (OPA1) and Mitofusins 1 and 2 (Mfn 1 and 2), are known to significantly impact the mitochondrial ultrastructure, suggesting alterations of their membranes' lipid profiles. In order to make an insight into this issue, we used hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization-high resolution mass spectrometry to investigate the mitochondrial phospholipid (PL) profile of mouse embryonic fibroblasts (MEFs) knocked out for OPA1 and Mfn1/2 genes. 167 different sum compositions were recognized for the four major PL classes of mitochondria, namely phosphatidylcholines (PC, 63), phosphatidylethanolamines (PE, 55), phosphatidylinositols (PI, 21) and cardiolipins (CL, 28). A slight decrease in the CL/PC ratio was found for Mfn1/2-knock out mitochondria. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) were subsequently used to further process HILIC-ESI-MS data. A progressive decrease in the incidence of alk(en)yl/acyl species in PC and PE classes and a general increase in the incidence of unsaturated acyl chains across all the investigated PL classes was inferred in OPA1 and Mfn1/2 knockouts compared to wild-type MEFs. These findings suggest a reshaping of the PL profile consistent with the changes observed in the mitochondrial ultrastructure when fusion proteins are absent. Based on the existing knowledge on the metabolism of mitochondrial phospholipids, we propose that fusion proteins, especially mitofusins, might influence the PL transfer between the mitochondria and the endoplasmic reticulum, likely in the context of mitochondria-associated membranes (MAMs).

2.
NPJ Genom Med ; 9(1): 21, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519481

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in the cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 8 severe de novo pdSNVs in genes not previously implicated in ASD (AGPAT3, IRX5, MGAT5B, RAB8B, RAP1A, RASAL2, SLC9A1, YME1L1) highlighted promising candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, although this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in ASD/NDD candidate genes not yet established. In conclusion, our study highlights promising ASD candidate genes and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.

3.
Cell Rep Med ; 5(2): 101383, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38272025

RESUMO

Idebenone, the only approved treatment for Leber hereditary optic neuropathy (LHON), promotes recovery of visual function in up to 50% of patients, but we can neither predict nor understand the non-responders. Idebenone is reduced by the cytosolic NAD(P)H oxidoreductase I (NQO1) and directly shuttles electrons to respiratory complex III, bypassing complex I affected in LHON. We show here that two polymorphic variants drastically reduce NQO1 protein levels when homozygous or compound heterozygous. This hampers idebenone reduction. In its oxidized form, idebenone inhibits complex I, decreasing respiratory function in cells. By retrospectively analyzing a large cohort of idebenone-treated LHON patients, classified by their response to therapy, we show that patients with homozygous or compound heterozygous NQO1 variants have the poorest therapy response, particularly if carrying the m.3460G>A/MT-ND1 LHON mutation. These results suggest consideration of patient NQO1 genotype and mitochondrial DNA mutation in the context of idebenone therapy.


Assuntos
Atrofia Óptica Hereditária de Leber , Ubiquinona/análogos & derivados , Humanos , Atrofia Óptica Hereditária de Leber/tratamento farmacológico , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Estudos Retrospectivos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Ubiquinona/metabolismo , Complexo I de Transporte de Elétrons/genética , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo
4.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961520

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a strong genetic component in which rare variants contribute significantly to risk. We have performed whole genome and/or exome sequencing (WGS and WES) and SNP-array analysis to identify both rare sequence and copy number variants (SNVs and CNVs) in 435 individuals from 116 ASD families. We identified 37 rare potentially damaging de novo SNVs (pdSNVs) in cases (n = 144). Interestingly, two of them (one stop-gain and one missense variant) occurred in the same gene, BRSK2. Moreover, the identification of 9 severe de novo pdSNVs in genes not previously implicated in ASD (RASAL2, RAP1A, IRX5, SLC9A1, AGPAT3, MGAT3, RAB8B, MGAT5B, YME1L1), highlighted novel candidates. Potentially damaging CNVs (pdCNVs) provided support to the involvement of inherited variants in PHF3, NEGR1, TIAM1 and HOMER1 in neurodevelopmental disorders (NDD), although mostly acting as susceptibility factors with incomplete penetrance. Interpretation of identified pdSNVs/pdCNVs according to the ACMG guidelines led to a molecular diagnosis in 19/144 cases, but this figure represents a lower limit and is expected to increase thanks to further clarification of the role of likely pathogenic variants in new ASD/NDD candidates. In conclusion, our study strengthens the role of BRSK2 and other neurodevelopmental genes in ASD risk, highlights novel candidates and contributes to characterize the allelic diversity, mode of inheritance and phenotypic impact of de novo and inherited risk variants in ASD/NDD genes.

5.
J Med Genet ; 61(1): 93-101, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37734847

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder characterised by complex I defect leading to sudden degeneration of retinal ganglion cells. Although typically associated with pathogenic variants in mitochondrial DNA, LHON was recently described in patients carrying biallelic variants in nuclear genes DNAJC30, NDUFS2 and MCAT. MCAT is part of mitochondrial fatty acid synthesis (mtFAS), as also MECR, the mitochondrial trans-2-enoyl-CoA reductase. MECR mutations lead to a recessive childhood-onset syndromic disorder with dystonia, optic atrophy and basal ganglia abnormalities. METHODS: We studied through whole exome sequencing two sisters affected by sudden and painless visual loss at young age, with partial recovery and persistent central scotoma. We modelled the candidate variant in yeast and studied mitochondrial dysfunction in yeast and fibroblasts. We tested protein lipoylation and cell response to oxidative stress in yeast. RESULTS: Both sisters carried a homozygous pathogenic variant in MECR (p.Arg258Trp). In yeast, the MECR-R258W mutant showed an impaired oxidative growth, 30% reduction in oxygen consumption rate and 80% decrease in protein levels, pointing to structure destabilisation. Fibroblasts confirmed the reduced amount of MECR protein, but failed to reproduce the OXPHOS defect. Respiratory complexes assembly was normal. Finally, the yeast mutant lacked lipoylation of key metabolic enzymes and was more sensitive to H2O2 treatment. Lipoic Acid supplementation partially rescued the growth defect. CONCLUSION: We report the first family with homozygous MECR variant causing an LHON-like optic neuropathy, which pairs the recent MCAT findings, reinforcing the impairment of mtFAS as novel pathogenic mechanism in LHON.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Hereditária de Leber , Criança , Humanos , DNA Mitocondrial/genética , Peróxido de Hidrogênio/metabolismo , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Saccharomyces cerevisiae/genética
6.
Sci Rep ; 13(1): 13972, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633960

RESUMO

The occurrence of methyl carbamates of phosphatidylethanolamines and phosphatidylserines in the lipid extract of mitochondria obtained from mouse embryonic fibroblasts was ascertained by hydrophilic interaction liquid chromatography with electrospray ionization single and multi-stage mass spectrometry, performed using sinergically a high resolution (quadrupole-Orbitrap) and a low resolution (linear ion trap) spectrometer. Two possible routes to the synthesis of methyl carbamates of phospholipids were postulated and evaluated: (i) a chemical transformation involving phosgene, occurring as a photooxidation by-product in the chloroform used for lipid extraction, and methanol, also used for the latter; (ii) an enzymatic methoxycarbonylation reaction due to an accidental bacterial contamination, that was unveiled subsequently on the murine mitochondrial sample. A specific lipid extraction performed on a couple of standard phosphatidyl-ethanolamines/-serines, based on purposely photo-oxidized chloroform and deuterated methanol, indicated route (i) as negligible in the specific case, thus highlighting the enzymatic route related to bacterial contamination as the most likely source of methyl carbamates. The unambiguous recognition of the latter might represent the starting point toward a better understanding of their generation in biological systems and a minimization of their occurrence when an artefactual formation is ascertained.


Assuntos
Clorofórmio , Fosfatidiletanolaminas , Animais , Camundongos , Fibroblastos , Metanol , Fosfatidilserinas , Carbamatos , Mitocôndrias
7.
Front Genet ; 13: 953762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419830

RESUMO

Autism spectrum disorder (ASD) is a clinically heterogeneous class of neurodevelopmental conditions with a strong, albeit complex, genetic basis. The genetic architecture of ASD includes different genetic models, from monogenic transmission at one end, to polygenic risk given by thousands of common variants with small effects at the other end. The mitochondrial DNA (mtDNA) was also proposed as a genetic modifier for ASD, mostly focusing on maternal mtDNA, since the paternal mitogenome is not transmitted to offspring. We extensively studied the potential contribution of mtDNA in ASD pathogenesis and risk through deep next generation sequencing and quantitative PCR in a cohort of 98 families. While the maternally-inherited mtDNA did not seem to predispose to ASD, neither for haplogroups nor for the presence of pathogenic mutations, an unexpected influence of paternal mtDNA, apparently centered on haplogroup U, came from the Italian families extrapolated from the test cohort (n = 74) when compared to the control population. However, this result was not replicated in an independent Italian cohort of 127 families and it is likely due to the elevated paternal age at time of conception. In addition, ASD probands showed a reduced mtDNA content when compared to their unaffected siblings. Multivariable regression analyses indicated that variants with 15%-5% heteroplasmy in probands are associated to a greater severity of ASD based on ADOS-2 criteria, whereas paternal super-haplogroups H and JT were associated with milder phenotypes. In conclusion, our results suggest that the mtDNA impacts on ASD, significantly modifying the phenotypic expression in the Italian population. The unexpected finding of protection induced by paternal mitogenome in term of severity may derive from a role of mtDNA in influencing the accumulation of nuclear de novo mutations or epigenetic alterations in fathers' germinal cells, affecting the neurodevelopment in the offspring. This result remains preliminary and needs further confirmation in independent cohorts of larger size. If confirmed, it potentially opens a different perspective on how paternal non-inherited mtDNA may predispose or modulate other complex diseases.

8.
Mol Med ; 28(1): 90, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922766

RESUMO

BACKGROUND: Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. METHODS: We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. RESULTS: The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). CONCLUSIONS: Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF.


Assuntos
Síndrome MERRF , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Sirolimo/metabolismo , Sirolimo/farmacologia
9.
Cell Rep ; 40(3): 111124, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858578

RESUMO

Leber's hereditary optic neuropathy (LHON), a disease associated with a mitochondrial DNA mutation, is characterized by blindness due to degeneration of retinal ganglion cells (RGCs) and their axons, which form the optic nerve. We show that a sustained pathological autophagy and compartment-specific mitophagy activity affects LHON patient-derived cells and cybrids, as well as induced pluripotent-stem-cell-derived neurons. This is variably counterbalanced by compensatory mitobiogenesis. The aberrant quality control disrupts mitochondrial homeostasis as reflected by defective bioenergetics and excessive reactive oxygen species production, a stress phenotype that ultimately challenges cell viability by increasing the rate of apoptosis. We counteract this pathological mechanism by using autophagy regulators (clozapine and chloroquine) and redox modulators (idebenone), as well as genetically activating mitochondrial biogenesis (PGC1-α overexpression). This study substantially advances our understanding of LHON pathophysiology, providing an integrated paradigm for pathogenesis of mitochondrial diseases and druggable targets for therapy.


Assuntos
Atrofia Óptica Hereditária de Leber , DNA Mitocondrial/genética , Homeostase , Humanos , Mitocôndrias/genética , Mitofagia/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia
10.
Mol Genet Metab ; 135(1): 72-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916127

RESUMO

INTRODUCTION: The mitochondrial DNA (mtDNA) m.3243A > G mutation in the MT-TL1 gene results in a multi-systemic disease, that is commonly associated with neurodegenerative changes in the brain. METHODS: Seventeen patients harboring the m3243A > G mutation were enrolled (age 43.1 ± 11.4 years, 10 M/7F). A panel of plasma biomarkers including lactate acid, alanine, L-arginine, fibroblast growth factor 21 (FGF-21), growth/differentiation factor 15 (GDF-15) and circulating cell free -mtDNA (ccf-mtDNA), as well as blood, urine and muscle mtDNA heteroplasmy were evaluated. Patients also underwent a brain standardized MR protocol that included volumetric T1-weighted images and diffusion-weighted MRI. Twenty sex- and age-matched healthy controls were included. Voxel-wise analysis was performed on T1-weighted and diffusion imaging, respectively with VBM (voxel-based morphometry) and TBSS (Tract-based Spatial Statistics). Ventricular lactate was also evaluated by 1H-MR spectroscopy. RESULTS: A widespread cortical gray matter (GM) loss was observed, more severe (p < 0.001) in the bilateral calcarine, insular, frontal and parietal cortex, along with infratentorial cerebellar cortex. High urine mtDNA mutation load, high levels of plasma lactate and alanine, low levels of plasma arginine, high levels of serum FGF-21 and ventricular lactate accumulation significantly (p < 0.05) correlated with the reduced brain GM density. Widespread microstructural alterations were highlighted in the white matter, significantly (p < 0.05) correlated with plasma alanine and arginine levels, with mtDNA mutation load in urine, with high level of serum GDF-15 and with high content of plasma ccf-mtDNA. CONCLUSIONS: Our results suggest that the synergy of two pathogenic mechanisms, mtDNA-related mitochondrial respiratory deficiency and defective nitric oxide metabolism, contributes to the brain neurodegeneration in m.3243A > G patients.


Assuntos
Substância Branca , Adulto , Biomarcadores , Encéfalo/patologia , DNA Mitocondrial/genética , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
11.
Stem Cell Reports ; 16(8): 1953-1967, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329598

RESUMO

The generation of inducible pluripotent stem cells (iPSCs) is a revolutionary technique allowing production of pluripotent patient-specific cell lines used for disease modeling, drug screening, and cell therapy. Integrity of nuclear DNA (nDNA) is mandatory to allow iPSCs utilization, while quality control of mitochondrial DNA (mtDNA) is rarely included in the iPSCs validation process. In this study, we performed mtDNA deep sequencing during the transition from parental fibroblasts to reprogrammed iPSC and to differentiated neuronal precursor cells (NPCs) obtained from controls and patients affected by mitochondrial disorders. At each step, mtDNA variants, including those potentially pathogenic, fluctuate between emerging and disappearing, and some having functional implications. We strongly recommend including mtDNA analysis as an unavoidable assay to obtain fully certified usable iPSCs and NPCs.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Células-Tronco Neurais/metabolismo , Adulto , Idoso de 80 Anos ou mais , Linhagem Celular , Células Cultivadas , Criança , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Células-Tronco Neurais/citologia , Adulto Jovem
12.
Front Neurol ; 12: 648916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168607

RESUMO

More than 30 years after discovering Leber's hereditary optic neuropathy (LHON) as the first maternally inherited disease associated with homoplasmic mtDNA mutations, we still struggle to achieve effective therapies. LHON is characterized by selective degeneration of retinal ganglion cells (RGCs) and is the most frequent mitochondrial disease, which leads young people to blindness, in particular males. Despite that causative mutations are present in all tissues, only a specific cell type is affected. Our deep understanding of the pathogenic mechanisms in LHON is hampered by the lack of appropriate models since investigations have been traditionally performed in non-neuronal cells. Effective in-vitro models of LHON are now emerging, casting promise to speed our understanding of pathophysiology and test therapeutic strategies to accelerate translation into clinic. We here review the potentials of these new models and their impact on the future of LHON patients.

13.
Ann Clin Transl Neurol ; 8(6): 1200-1211, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33951347

RESUMO

OBJECTIVE: The purpose of this study was to investigate correlations between brain proton magnetic resonance spectroscopy (1 H-MRS) findings with serum biomarkers and heteroplasmy of mitochondrial DNA (mtDNA) mutations. This study enrolled patients carrying mtDNA mutations associated with Mitochondrial Encephalomyopathy, Lactic Acidosis, and Stroke-like episodes (MELAS), and MELAS-Spectrum Syndrome (MSS). METHODS: Consecutive patients carrying mtDNA mutations associated with MELAS and MSS were recruited and their serum concentrations of lactate, alanine, and heteroplasmic mtDNA mutant load were evaluated. The brain protocol included single-voxel 1 H-MRS (1.5T) in the medial parieto-occipital cortex (MPOC), left cerebellar hemisphere, parieto-occipital white matter (POWM), and lateral ventricles. Relative metabolite concentrations of N-acetyl-aspartate (NAA), choline (Cho), and myo-inositol (mI) were estimated relative to creatine (Cr), using LCModel 6.3. RESULTS: Six patients with MELAS (age 28 ± 13 years, 3 [50%] female) and 17 with MSS (age 45 ± 11 years, 7 [41%] female) and 39 sex- and age-matched healthy controls (HC) were enrolled. These patients demonstrated a lower NAA/Cr ratio in MPOC compared to HC (p = 0.006), which inversely correlated with serum lactate (p = 0.021, rho = -0.68) and muscle mtDNA heteroplasmy (p < 0.001, rho = -0.80). Similarly, in the cerebellum patients had lower NAA/Cr (p < 0.001), Cho/Cr (p = 0.002), and NAA/mI (p = 0.001) ratios, which negatively correlated with mtDNA blood heteroplasmy (p = 0.001, rho = -0.81) and with alanine (p = 0.050, rho = -0.67). Ventricular lactate was present in 78.3% (18/23) of patients, correlating with serum lactate (p = 0.024, rho = 0.58). CONCLUSION: Correlations were found between the peripheral and biochemical markers of mitochondrial dysfunction and brain in vivo markers of neurodegeneration, supporting the use of both biomarkers as signatures of MELAS and MSS disease, to evaluate the efficacy of potential treatments.


Assuntos
DNA Mitocondrial/genética , Síndrome MELAS/diagnóstico , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adolescente , Adulto , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Biomarcadores/metabolismo , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Colina/metabolismo , Humanos , Inositol/metabolismo , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/metabolismo , Síndrome MELAS/sangue , Masculino , Pessoa de Meia-Idade , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Adulto Jovem
14.
Brain ; 144(5): 1451-1466, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33855352

RESUMO

Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.


Assuntos
DNA Ligase Dependente de ATP/genética , Gastroenteropatias/genética , Motilidade Gastrointestinal/genética , Encefalomiopatias Mitocondriais/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , Feminino , Gastroenteropatias/patologia , Humanos , Masculino , Encefalomiopatias Mitocondriais/patologia , Mutação , Linhagem , Peixe-Zebra
15.
Biomolecules ; 11(4)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806088

RESUMO

Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.


Assuntos
Doenças do Nervo Óptico/patologia , Nervo Óptico/metabolismo , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Metabolismo dos Lipídeos , Dinâmica Mitocondrial , Doenças do Nervo Óptico/genética , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
16.
Cancers (Basel) ; 13(2)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467731

RESUMO

Acidity is a key player in cancer progression, modelling a microenvironment that prevents immune surveillance and enhances invasiveness, survival, and drug resistance. Here, we demonstrated in spheroids from osteosarcoma cell lines that the exposure to acidosis remarkably caused intracellular lipid droplets accumulation. Lipid accumulation was also detected in sarcoma tissues in close proximity to tumor area that express the acid-related biomarker LAMP2. Acid-induced lipid droplets-accumulation was not functional to a higher energetic request, but rather to cell survival. As a mechanism, we found increased levels of sphingomyelin and secretion of the sphingosine 1-phosphate, and the activation of the associated sphingolipid pathway and the non-canonical NF-ĸB pathway, respectively. Moreover, decreasing sphingosine 1-phosphate levels (S1P) by FTY720 (Fingolimod) impaired acid-induced tumor survival and migration. As a confirmation of the role of S1P in osteosarcoma, we found S1P high circulating levels (30.8 ± 2.5 nmol/mL, n = 17) in the serum of patients. Finally, when we treated osteosarcoma xenografts with FTY720 combined with low-serine/glycine diet, both lipid accumulation (as measured by magnetic resonance imaging) and tumor growth were greatly inhibited. For the first time, this study profiles the lipidomic rearrangement of sarcomas under acidic conditions, suggesting the use of anti-S1P strategies in combination with standard chemotherapy.

17.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33465056

RESUMO

Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP40/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Adolescente , Adulto , Linhagem Celular , Pré-Escolar , Complexo I de Transporte de Elétrons/química , Feminino , Técnicas de Inativação de Genes , Genes Recessivos , Proteínas de Choque Térmico HSP40/deficiência , Proteínas de Choque Térmico HSP40/metabolismo , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância , Fenótipo , Subunidades Proteicas , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem
18.
J Cell Mol Med ; 25(5): 2459-2470, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476483

RESUMO

Autism spectrum disorder (ASD) is characterized by a complex polygenic background, but with the unique feature of a subset of cases (~15%-30%) presenting a rare large-effect variant. However, clinical interpretation in these cases is often complicated by incomplete penetrance, variable expressivity and different neurodevelopmental trajectories. NRXN1 intragenic deletions represent the prototype of such ASD-associated susceptibility variants. From chromosomal microarrays analysis of 104 ASD individuals, we identified an inherited NRXN1 deletion in a trio family. We carried out whole-exome sequencing and deep sequencing of mitochondrial DNA (mtDNA) in this family, to evaluate the burden of rare variants which may contribute to the phenotypic outcome in NRXN1 deletion carriers. We identified an increased burden of exonic rare variants in the ASD child compared to the unaffected NRXN1 deletion-transmitting mother, which remains significant if we restrict the analysis to potentially deleterious rare variants only (P = 6.07 × 10-5 ). We also detected significant interaction enrichment among genes with damaging variants in the proband, suggesting that additional rare variants in interacting genes collectively contribute to cross the liability threshold for ASD. Finally, the proband's mtDNA presented five low-level heteroplasmic mtDNA variants that were absent in the mother, and two maternally inherited variants with increased heteroplasmic load. This study underlines the importance of a comprehensive assessment of the genomic background in carriers of large-effect variants, as penetrance modulation by additional interacting rare variants to might represent a widespread mechanism in neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista/etiologia , Proteínas de Ligação ao Cálcio/genética , Predisposição Genética para Doença , Heterozigoto , Moléculas de Adesão de Célula Nervosa/genética , Penetrância , Deleção de Sequência , Adulto , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/psicologia , Hibridização Genômica Comparativa , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Éxons , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Estudos de Associação Genética , Variação Genética , Genoma Mitocondrial , Genômica/métodos , Humanos , Lactente , Masculino , Fenótipo , Sequenciamento do Exoma
19.
Hum Mol Genet ; 29(22): 3631-3645, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33231680

RESUMO

OPA1 mutations are the major cause of dominant optic atrophy (DOA) and the syndromic form DOA plus, pathologies for which there is no established cure. We used a 'drug repurposing' approach to identify FDA-approved molecules able to rescue the mitochondrial dysfunctions induced by OPA1 mutations. We screened two different chemical libraries by using two yeast strains carrying the mgm1I322M and the chim3P646L mutations, identifying 26 drugs able to rescue their oxidative growth phenotype. Six of them, able to reduce the mitochondrial DNA instability in yeast, have been then tested in Opa1 deleted mouse embryonic fibroblasts expressing the human OPA1 isoform 1 bearing the R445H and D603H mutations. Some of these molecules were able to ameliorate the energetic functions and/or the mitochondrial network morphology, depending on the type of OPA1 mutation. The final validation has been performed in patients' fibroblasts, allowing to select the most effective molecules. Our current results are instrumental to rapidly translating the findings of this drug repurposing approach into clinical trial for DOA and other neurodegenerations caused by OPA1 mutations.


Assuntos
Reposicionamento de Medicamentos , GTP Fosfo-Hidrolases/genética , Doenças Neurodegenerativas/tratamento farmacológico , Atrofia Óptica Autossômica Dominante/tratamento farmacológico , Animais , DNA Mitocondrial/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mutação/efeitos dos fármacos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia , Linhagem , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
20.
J Mol Med (Berl) ; 98(10): 1467-1478, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851462

RESUMO

Mitochondrial diseases are highly heterogeneous metabolic disorders caused by genetic alterations in the mitochondrial DNA (mtDNA) or in the nuclear genome. In this study, we investigated a panel of blood biomarkers in a cohort of 123 mitochondrial patients, with prominent neurological and muscular manifestations. These biomarkers included creatine, fibroblast growth factor 21 (FGF21) and growth/differentiation factor 15 (GDF-15), and the novel cell free circulating-mtDNA (ccf-mtDNA). All biomarkers were significantly increased in the patient group. After stratification by the specific phenotypes, ccf-mtDNA was significantly increased in the Mitochondrial Encephalomyopathy Lactic Acidosis Stroke-like episodes syndrome (MELAS) group, and FGF21 and GDF-15 were significantly elevated in patients with MELAS and Myoclonic Epilepsy Ragged Red Fibers syndrome. On the contrary, in our cohort, creatine was not associated to a specific clinical phenotype. Longitudinal assessment in four MELAS patients showed increased levels of ccf-mtDNA in relation to acute events (stroke-like episodes/status epilepticus) or progression of neurodegeneration. Our results confirm the association of FGF21 and GDF-15 with mitochondrial translation defects due to tRNA mutations. Most notably, the novel ccf-mtDNA was strongly associated with MELAS and may be used for monitoring the disease course or to evaluate the efficacy of therapies, especially in the acute phase. KEY MESSAGES: • FGF21/GDF15 efficiently identifies mitochondrial diseases due to mutations in tRNA genes. • The novel ccf-mtDNA is associated with MELAS and increases during acute events. • Creatine only discriminates severe mitochondrial patients. • FGF21, GDF-15, and ccf-mtDNA are possibly useful for monitoring therapy efficacy.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/etiologia , Doenças Mitocondriais/metabolismo , Adulto , Animais , Ácidos Nucleicos Livres , DNA Mitocondrial , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Mutação , Fenótipo , Curva ROC , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...