Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Vaccines (Basel) ; 12(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543879

RESUMO

HPV vaccination rates remain low among US adolescents, with only 54% completing the series in 2019. The vaccine is recommended at age 11-12 but can be given as early as age 9. Although it has been found that offering the vaccine earlier improves completion rates by age 13, parents remain reluctant to allow their younger children to initiate this vaccine. The purpose of this study was to better understand parental beliefs regarding receipt of the HPV vaccine among their children at ages 9-10. A 40 min phone interview was completed with 21 participants who were asked about their vaccine viewpoints. Even after receiving one-on-one education from a patient navigator, many caretakers expressed inadequate knowledge of the HPV vaccine and limited exposure to both positive and negative influences. The biggest concern was vaccine side effects, often resulting from a lack of medical understanding. Most parents were reluctant to vaccinate their children at a school-based clinic or pharmacy and believed that the government should not mandate HPV vaccination for public school attendance. Our study provides insight into parental beliefs and attitudes about HPV vaccination at age 9-10 years and barriers that need to be addressed.

2.
Respir Res ; 23(1): 221, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031619

RESUMO

BACKGROUND: Mid-Regional pro-Adrenomedullin (MR-proADM) is an inflammatory biomarker that improves the prognostic assessment of patients with sepsis, septic shock and organ failure. Previous studies of MR-proADM have primarily focussed on bacterial infections. A limited number of small and monocentric studies have examined MR-proADM as a prognostic factor in patients infected with SARS-CoV-2, however there is need for multicenter validation. An evaluation of its utility in predicting need for hospitalisation in viral infections was also performed. METHODS: An observational retrospective analysis of 1861 patients, with SARS-CoV-2 confirmed by RT-qPCR, from 10 hospitals across Europe was performed. Biomarkers, taken upon presentation to Emergency Departments (ED), clinical scores, patient demographics and outcomes were collected. Multiclass random forest classifier models were generated as well as calculation of area under the curve analysis. The primary endpoint was hospital admission with and without death. RESULTS: Patients suitable for safe discharge from Emergency Departments could be identified through an MR-proADM value of ≤ 1.02 nmol/L in combination with a CRP (C-Reactive Protein) of ≤ 20.2 mg/L and age ≤ 64, or in combination with a SOFA (Sequential Organ Failure Assessment) score < 2 if MR-proADM was ≤ 0.83 nmol/L regardless of age. Those at an increased risk of mortality could be identified upon presentation to secondary care with an MR-proADM value of > 0.85 nmol/L, in combination with a SOFA score ≥ 2 and LDH > 720 U/L, or in combination with a CRP > 29.26 mg/L and age ≤ 64, when MR-proADM was > 1.02 nmol/L. CONCLUSIONS: This international study suggests that for patients presenting to the ED with confirmed SARS-CoV-2 infection, MR-proADM in combination with age and CRP or with the patient's SOFA score could identify patients at low risk where outpatient treatment may be safe.


Assuntos
Adrenomedulina , COVID-19 , Hospitalização , Adrenomedulina/análise , Biomarcadores , Proteína C-Reativa , COVID-19/mortalidade , Mortalidade Hospitalar , Humanos , Prognóstico , Precursores de Proteínas , Estudos Retrospectivos , SARS-CoV-2
3.
Front Microbiol ; 13: 868839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663881

RESUMO

Acid mine drainage (AMD) systems are extremely acidic and are metal-rich formations inhabited by relatively low-complexity communities of acidophiles whose enzymes remain mostly uncharacterized. Indeed, enzymes from only a few AMD sites have been studied. The low number of available cultured representatives and genome sequences of acidophiles inhabiting AMDs makes it difficult to assess the potential of these environments for enzyme bioprospecting. In this study, using naïve and in silico metagenomic approaches, we retrieved 16 esterases from the α/ß-hydrolase fold superfamily with the closest match from uncultured acidophilic Acidobacteria, Actinobacteria (Acidithrix, Acidimicrobium, and Ferrimicrobium), Acidiphilium, and other Proteobacteria inhabiting the Los Rueldos site, which is a unique AMD formation in northwestern Spain with a pH of ∼2. Within this set, only two polypeptides showed high homology (99.4%), while for the rest, the pairwise identities ranged between 4 and 44.9%, suggesting that the diversity of active polypeptides was dominated not by a particular type of protein or highly similar clusters of proteins, but by diverse non-redundant sequences. The enzymes exhibited amino acid sequence identities ranging from 39 to 99% relative to homologous proteins in public databases, including those from other AMDs, thus indicating the potential novelty of proteins associated with a specialized acidophilic community. Ten of the 16 hydrolases were successfully expressed in Escherichia coli. The pH for optimal activity ranged from 7.0 to 9.0, with the enzymes retaining 33-68% of their activities at pH 5.5, which was consistent with the relative frequencies of acid residues (from 54 to 67%). The enzymes were the most active at 30-65°C, retaining 20-61% of their activity under the thermal conditions characterizing Los Rueldos (13.8 ± 0.6°C). The analysis of the substrate specificity revealed the capacity of six hydrolases to efficiently degrade (up to 1,652 ± 75 U/g at pH 8.0 and 30°C) acrylic- and terephthalic-like [including bis(2-hydroxyethyl)-terephthalate, BHET] esters, and these enzymes could potentially be of use for developing plastic degradation strategies yet to be explored. Our assessment uncovers the novelty and potential biotechnological interest of enzymes present in the microbial populations that inhibit the Los Rueldos AMD system.

4.
Int J Infect Dis ; 111: 211-218, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34461254

RESUMO

OBJECTIVES: Thromboinflammation, resulting from a complex interaction between thrombocytopathy, coagulopathy, and endotheliopathy, contributes to increased mortality in COVID-19 patients. MR-proADM, as a surrogate of adrenomedullin system disruption, leading to endothelial damage, has been reported as a promising biomarker for short-term prognosis. We evaluated the role of MR-proADM in the mid-term mortality in COVID-19 patients. METHODS: A prospective, observational study enrolling COVID-19 patients from August to October 2020. A blood sample for laboratory test analysis was drawn on arrival in the emergency department. The primary endpoint was 90-day mortality. The area under the curve (AUC) and Cox regression analyses were used to assess discriminatory ability and association with the endpoint. RESULTS: A total of 359 patients were enrolled, and the 90-day mortality rate was 8.9%. ROC AUC for MR-proADM predicting 90-day mortality was 0.832. An optimal cutoff of 0.80 nmol/L showed a sensitivity of 96.9% and a specificity of 58.4%, with a negative predictive value of 99.5%. Circulating MR-proADM levels (inverse transformed), after adjusting by a propensity score including eleven potential confounders, were an independent predictor of 90-day mortality (HR: 0.162 [95% CI: 0.043-0.480]) CONCLUSIONS: Our data confirm that MR-proADM has a role in the mid-term prognosis of COVID-19 patients and might assist physicians with risk stratification.


Assuntos
COVID-19 , Trombose , Adrenomedulina , Biomarcadores , Humanos , Inflamação , Prognóstico , Estudos Prospectivos , Precursores de Proteínas , Medição de Risco , SARS-CoV-2
5.
J Pharm Biomed Anal ; 193: 113747, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33217711

RESUMO

Obesity has reached an epidemic level worldwide, and bariatric surgery (BS) has been proven to be the most efficient therapy to reduce severe obesity-related comorbidities. Given that the gut microbiota plays a causal role in obesity development and that surgery may alter the gut environment, investigating the impact of BS on the microbiota in the context of severe obesity is important. Although, alterations at the level of total gut bacteria, total gene content and total metabolite content have started to be disentangled, a clear deficit exists regarding the analysis of the active fraction of the microbiota, which is the fraction that is most reactive to the BS. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics and metabolomics in 40 severely obese volunteers. Samples from each volunteer were obtained under basal conditions, after a short high protein and calorie-restricted diet, and 1 and 3 months after BS, including laparoscopic surgery through Roux-en-Y Gastric Bypass or Sleeve Gastrectomy. The results revealed for the first time the most active microbes and metabolic flux distribution pre- and post-surgery and deciphered main differences in the way sugars and short-fatty acids are metabolized, demonstrating that less energy-generating and anaerobic metabolism and detoxification mechanisms are promoted post-surgery. A comparison with non-obese proteome data further signified different ways to metabolize sugars and produce short chain fatty acids and deficiencies in proteins involved in iron transport and metabolism in severely obese individuals compared to lean individuals.


Assuntos
Cirurgia Bariátrica , Derivação Gástrica , Microbioma Gastrointestinal , Obesidade Mórbida , Humanos , Obesidade Mórbida/cirurgia , Redução de Peso
6.
Acta Paediatr ; 109(10): 2091-2098, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32064679

RESUMO

AIM: The aim of this study was to determine whether a direct relationship existed between absolute telomere length (aTL), obesity and familial functionality in a group of Mexican children. METHODS: We recruited 134 children (52% boys) aged 8-10 years during regular primary care check-ups in 2016 and evaluated physical activity (PA), feeding practices, anthropometrics, body fat percentage (BF%) and family dysfunction. Optimised quantitative PCR determined aTL from genomic deoxyribonucleic acid isolated from saliva samples. RESULTS: Boys with a healthy BF% showed a higher aTL than their high BF% counterparts (P < .01). aTL was higher in children who performed PA than their sedentary counterparts (P < .05). Alarmingly, 90% of the children belonged to dysfunctional families and a dysfunctional family was correlated with a higher BF% (r = -.57). Negative correlations between the BF% and aTL (r = -.1765) and the BF% and time dedicated to PA (r = -.031) were observed in boys. On the contrary, we found a positive correlation between the aTL and weekly PA (r = .1938). These correlations were not observed in girls. CONCLUSION: Telomere shortening was associated with a high BF% in boys, but not girls. Dysfunctional families were also a key factor. School PA programmes should be mandatory.


Assuntos
Tecido Adiposo , Telômero , Índice de Massa Corporal , Criança , Estudos Transversais , Feminino , Humanos , Masculino , México , Telômero/genética
7.
Aging Cell ; 19(1): e13063, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730262

RESUMO

Composition of the gut microbiota changes during ageing, but questions remain about whether age is also associated with deficits in microbiome function and whether these changes occur sharply or progressively. The ability to define these deficits in populations of different ages may help determine a chronological age threshold at which deficits occur and subsequently identify innovative dietary strategies for active and healthy ageing. Here, active gut microbiota and associated metabolic functions were evaluated using shotgun proteomics in three well-defined age groups consisting of 30 healthy volunteers, namely, ten infants, ten adults and ten elderly individuals. Samples from each volunteer at intervals of up to 6 months (n = 83 samples) were used for validation. Ageing gradually increases the diversity of gut bacteria that actively synthesize proteins, that is by 1.4-fold from infants to elderly individuals. An analysis of functional deficits consistently identifies a relationship between tryptophan and indole metabolism and ageing (p < 2.8e-8 ). Indeed, the synthesis of proteins involved in tryptophan and indole production and the faecal concentrations of these metabolites are directly correlated (r2  > .987) and progressively decrease with age (r2  > .948). An age threshold for a 50% decrease is observed ca. 11-31 years old, and a greater than 90% reduction is observed from the ages of 34-54 years. Based on recent investigations linking tryptophan with abundance of indole and other "healthy" longevity molecules and on the results from this small cohort study, dietary interventions aimed at manipulating tryptophan deficits since a relatively "young" age of 34 and, particularly, in the elderly are recommended.


Assuntos
Microbiota/fisiologia , Proteômica/métodos , Adulto , Fatores Etários , Idoso , Envelhecimento , Pré-Escolar , Feminino , Voluntários Saudáveis , Humanos , Masculino
8.
Appl Environ Microbiol ; 85(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30413473

RESUMO

Amination of bulky ketones, particularly in (R) configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent (S) selectivity. We also report representatives from the class III ω-TAs capable of converting (R) and (S) amines and bulky ketones and one that can convert amines with longer alkyl substituents. The preference for bulky ketones was associated with the presence of a hairpin region proximal to the conserved Arg414 and residues conforming and close to it. The outward orientation of Arg414 additionally favored the conversion of (R) amines. This configuration was also found to favor the utilization of putrescine as an amine donor, so that class III ω-TAs with Arg414 in outward orientation may participate in vivo in the catabolism of putrescine. The positioning of the conserved Ser231 also contributes to the preference for amines with longer alkyl substituents. Optimal temperatures for activity ranged from 45 to 65°C, and a few enzymes retained ≥50% of their activity in water-soluble solvents (up to 50% [vol/vol]). Hence, our results will pave the way to design, in the future, new class III ω-TAs converting bulky ketones and (R) amines for the production of high-value products and to screen for those converting putrescine.IMPORTANCE Amine transaminases of the class III ω-TAs are key enzymes for modification of chemical building blocks, but finding those capable of converting bulky ketones and (R) amines is still challenging. Here, by an extensive analysis of the substrate spectra of 10 class III ω-TAs, we identified a number of residues playing a role in determining the access and positioning of bulky ketones, bulky amines, and (R)- and (S) amines, as well as of environmentally relevant polyamines, particularly putrescine. The results presented can significantly expand future opportunities for designing (R)-specific class III ω-TAs to convert valuable bulky ketones and amines, as well as for deepening the knowledge into the polyamine catabolic pathways.


Assuntos
Proteínas de Bactérias/genética , Bioprospecção , Genes Bacterianos , Cetonas/metabolismo , Poliaminas/metabolismo , Pseudomonas oleovorans/genética , Transaminases/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Pseudomonas oleovorans/enzimologia , Pseudomonas oleovorans/metabolismo , Alinhamento de Sequência , Transaminases/metabolismo
9.
Methods Mol Biol ; 1835: 109-117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109647

RESUMO

Functional screens have been extensively used for searching native enzymes or mutant variants in clone libraries. Esterases and lipases are the most retrieved enzymes, because they are within the more demanded industrial enzymes and because a number of simple and generic screening methods can be applied for their screen. Here, we describe the use of a generic pH indicator assay protocol which unambiguously allows detecting in high-throughput manner esterase and lipase activity and quantifying specific activities using an ester concentration above 0.5 mM. The described method is simple and generic to allow the selection of esterases and lipases targeting desired esters.


Assuntos
Ensaios Enzimáticos , Esterases/metabolismo , Lipase/metabolismo , Animais , Ativação Enzimática , Ensaios Enzimáticos/métodos , Esterases/química , Esterases/genética , Ensaios de Triagem em Larga Escala , Humanos , Lipase/química , Lipase/genética , Especificidade por Substrato
10.
AIDS ; 32(10): 1229-1237, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29683848

RESUMO

OBJECTIVE: In a recent blinded randomized study, we found that in HIV-infected individuals a short supplementation with prebiotics (scGOS/lcFOS/glutamine) ameliorates dysbiosis of total gut bacteria, particularly among viremic untreated patients. Our study goal was to determine the fraction of the microbiota that becomes active during the intervention and that could provide additional functional information. DESIGN: A total of six healthy individuals, and 16 HIV-infected patients comprising viremic untreated patients (n = 5) and antiretroviral therapy-treated patients that are further divided into immunological responders (n = 7) and immunological nonresponders (n = 4) completed the 6-week course of prebiotic treatment, including six patients receiving a placebo. METHODS: Alpha and beta diversity of potentially active and total gut microbiota was evaluated using shotgun proteomics and 16S rRNA gene sequencing. RESULTS: HIV infection decreased dormancy and increased alpha diversity of active bacteria in comparison with the healthy controls, whose richness was not further influenced by the prebiotic intervention. The effect of the prebiotics was most evident at the beta-diversity of active bacteria, particularly within viremic untreated patients. We found that the prebiotics did not only ameliorate dysbiosis of total bacteria in viremic untreated patients but also increased the abundance of active bacteria with strong immunomodulatory properties and amino acids metabolism, namely Bifidobacteriaceae, at similar levels to those in healthy individuals. This effect was attenuated in ART-treated individuals. CONCLUSION: The effect of prebiotics was greater among ART-naive HIV-infected individuals than in ART-treated patients and healthy controls. This highlights the importance of therapies aimed at manipulating the microbiome in this group of patients.


Assuntos
Antirretrovirais/administração & dosagem , Bactérias/classificação , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por HIV/terapia , Prebióticos/administração & dosagem , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Seguimentos , Humanos , Pessoa de Meia-Idade , Filogenia , Placebos/administração & dosagem , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Biochemistry ; 57(15): 2245-2255, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29600855

RESUMO

Effects of altering the properties of an active site in an enzymatic homogeneous catalyst have been extensively reported. However, the possibility of increasing the number of such sites, as commonly done in heterogeneous catalytic materials, remains unexplored, particularly because those have to accommodate appropriate residues in specific configurations. This possibility was investigated by using a serine ester hydrolase as the target enzyme. By using the Protein Energy Landscape Exploration software, which maps ligand diffusion and binding, we found a potential binding pocket capable of holding an extra catalytic triad and oxyanion hole contacts. By introducing two mutations, this binding pocket became a catalytic site. Its substrate specificity, substrate preference, and catalytic activity were different from those of the native site of the wild type ester hydrolase and other hydrolases, due to the differences in the active site architecture. Converting the binding pocket into an extra catalytic active site was proven to be a successful approach to create a serine ester hydrolase with two functional reactive groups. Our results illustrate the accuracy and predictive nature of modern modeling techniques, opening novel catalytic opportunities coming from the presence of different catalytic environments in single enzymes.


Assuntos
Esterases/química , Esterases/genética , Engenharia de Proteínas , Domínio Catalítico , Especificidade por Substrato/genética
12.
ACS Chem Biol ; 13(1): 225-234, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29182315

RESUMO

Esterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function. Here, we performed an extensive analysis of the substrate spectra of 145 phylogenetically and environmentally diverse microbial esterases, when tested with 96 diverse esters. We determined the primary factors shaping their substrate range by analyzing substrate range patterns in combination with structural analysis and protein-ligand simulations. We found a structural parameter that helps rank (classify) the promiscuity level of esterases from sequence data at 94% accuracy. This parameter, the active site effective volume, exemplifies the topology of the catalytic environment by measuring the active site cavity volume corrected by the relative solvent accessible surface area (SASA) of the catalytic triad. Sequences encoding esterases with active site effective volumes (cavity volume/SASA) above a threshold show greater substrate spectra, which can be further extended in combination with phylogenetic data. This measure provides also a valuable tool for interrogating substrates capable of being converted. This measure, found to be transferred to phosphatases of the haloalkanoic acid dehalogenase superfamily and possibly other enzymatic systems, represents a powerful tool for low-cost bioprospecting for esterases with broad substrate ranges, in large scale sequence data sets.


Assuntos
Esterases/química , Esterases/metabolismo , Filogenia , Domínio Catalítico , Especificidade por Substrato
13.
Biomacromolecules ; 18(9): 2777-2788, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731680

RESUMO

Nitrilotriacetic amine (NTA)-functionalized nanoparticles obtained by aqueous polymerization-induced self-assembly (PISA) are introduced as immobilization supports for polyhistidine-functionalized (His-tagged) enzymes. A novel initiator for nitroxide-mediated polymerization based on the nitroxide SG1 and carrying a protected NTA moiety was first synthesized. Size-exclusion chromatography (SEC) and electrospray ionization mass spectrometry (ESI-MS) proved the ability of this initiator to produce well-defined end-functional vinyl polymers. Subsequently, oligo(ethylene glycol) methacrylate-based macroinitiators were synthesized and chain-extended to form amphiphilic block copolymer nanoparticles, either by nanoprecipitation or by PISA. The latter method yielded spherical nanoparticles with a higher definition, as demonstrated by dynamic light scattering (DLS). Deprotection of the NTA moiety and complexation with nickel ions were assessed by DLS and inductively coupled plasma optical emission spectroscopy/mass spectrometry (ICP-OES/MS). Finally, immobilization of His-tagged horseradish peroxidase and ester hydrolase were successfully carried out, leading to catalytically active nanobiocatalysts, as shown by UV-vis measurements.


Assuntos
Aminas/química , Enzimas Imobilizadas/química , Nanopartículas/química , Ácido Nitrilotriacético/análogos & derivados , Histidina/química , Polímeros/química
14.
Electrophoresis ; 38(18): 2275-2286, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28605027

RESUMO

The analysis of the microbial metabolome is crucial to fully understand the symbiotic relation between humans and microbes. That is why an explosion of metabolomics took place in the area. So far, at least several hundreds of microbial metabolites have been shown to be statistically altered when humans undergo a plethora of commonly faced perturbations. NMR and MS, usually coupled with GC, LC and CE have revealed their identities. CE is a robust analytical platform for the analysis of polar and ionic metabolites that are essential in order to assess the cells' activity. Due to its novelty, only 5% of the metabolomics studies investigate gut microbiota using CE, even though the metabolites found by CE as being significantly altered in human microbiota represent around 23% of the total number of metabolites identified by metabolomics tools. Herein, we discuss the advances of metabolomics in the frame of other OMICS techniques for human gut microbiota analysis. Afterwards, we focus on sample treatment, analytical methods and data processing in CE coupled to any detector that have been reported to date in order to enhance metabolite coverage in the art, and to identify metabolite markers that cannot be covered by other platforms but are of key importance for determining microbial activity and human health.


Assuntos
Eletroforese Capilar , Microbioma Gastrointestinal , Metabolômica , Animais , Humanos , Metaboloma/genética , Metaboloma/fisiologia , Fenótipo
15.
EBioMedicine ; 8: 203-216, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27428431

RESUMO

While changes in gut microbial populations have been described in human immuno-deficiency virus (HIV)-infected patients undergoing antiretroviral therapy (ART), the mechanisms underlying the contributions of gut bacteria and their molecular agents (metabolites and proteins) to immune recovery remain unexplored. To study this, we examined the active fraction of the gut microbiome, through examining protein synthesis and accumulation of metabolites inside gut bacteria and in the bloodstream, in 8 healthy controls and 29 HIV-infected individuals (6 being longitudinally studied). We found that HIV infection is associated to dramatic changes in the active set of gut bacteria simultaneously altering the metabolic outcomes. Effects were accentuated among immunological ART responders, regardless diet, subject characteristics, clinical variables other than immune recovery, the duration and type of ART and sexual preferences. The effect was found at quantitative levels of several molecular agents and active bacteria which were herein identified and whose abundance correlated with HIV immune pathogenesis markers. Although, we cannot rule out the possibility that some changes are partially a random consequence of the disease status, our data suggest that most likely reduced inflammation and immune recovery is a joint solution orchestrated by both the active fraction of the gut microbiota and the host.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1 , Terapia Antirretroviral de Alta Atividade , Biomarcadores , Contagem de Linfócito CD4 , Estudos de Casos e Controles , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/imunologia , Humanos , Imunidade , Masculino , Metaboloma , Metabolômica/métodos , Carga Viral
16.
Sci Rep ; 6: 26192, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27189771

RESUMO

Imbalances in gut bacteria have been associated with multiple diseases. However, whether there are disease-specific changes in gut microbial metabolism remains unknown. Here, we demonstrate that human immunodeficiency virus (HIV) infection (n = 33) changes, at quantifiable levels, the metabolism of gut bacteria. These changes are different than those observed in patients with the auto-immune disease systemic lupus erythaematosus (n = 18), and Clostridium difficile-associated diarrhoea (n = 6). Using healthy controls as a baseline (n = 16), we demonstrate that a trend in the nature and directionality of the metabolic changes exists according to the type of the disease. The impact on the gut microbial activity, and thus the metabolite composition and metabolic flux of gut microbes, is therefore disease-dependent. Our data further provide experimental evidence that HIV infection drastically changed the microbial community, and the species responsible for the metabolism of 4 amino acids, in contrast to patients with the other two diseases and healthy controls. The identification in this present work of specific metabolic deficits in HIV-infected patients may define nutritional supplements to improve the health of these patients.


Assuntos
Bactérias/metabolismo , Disbiose , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Infecções por HIV/complicações , Metaboloma , Humanos , Análise do Fluxo Metabólico , Pessoa de Meia-Idade , Espanha
17.
Comb Chem High Throughput Screen ; 19(8): 605-615, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26552433

RESUMO

Nowadays, enzymes can be efficiently identified and screened from metagenomic resources or mutant libraries. A set of a few hundred new enzymes can be found using a simple substrate within few months. Hence, the establishment of collections of enzymes is no longer a big hurdle. However, a key problem is the relatively low rate of positive hits and that a timeline of several years from the identification of a gene to the development of a process is the reality rather than the exception. Major problems are related to the time-consuming and cost-intensive screening process that only very few enzymes finally pass. Accessing to the highest possible enzyme and mutant diversity by different, but complementary approaches is increasingly important. The aim of this review is to deliver state-of-art status of traditional and novel screening protocols for targeting lipases, esterases and phospholipases of industrial relevance, and that can be applied at high throughput scale (HTS) for at least 200 distinct substrates, at a speed of more than 105 - 108 clones/day. We also review fine-tuning sequence analysis pipelines and in silico tools, which can further improve enzyme selection by an unprecedent speed (up to 1030 enzymes). If the hit rate in an enzyme collection could be increased by HTS approaches, it can be expected that also the very further expensive and time-consuming enzyme optimization phase could be significantly shortened, as the processes of enzyme-candidate selection by such methods can be adapted to conditions most likely similar to the ones needed at industrial scale.


Assuntos
Biblioteca Genômica , Ensaios de Triagem em Larga Escala/métodos , Esterases/genética , Ensaios de Triagem em Larga Escala/tendências , Indústrias , Lipase/genética , Metagenômica , Proteínas Mutantes/genética , Fosfolipases/genética
18.
Microb Biotechnol ; 9(1): 22-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26275154

RESUMO

Recent reports have suggested that the establishment of industrially relevant enzyme collections from environmental genomes has become a routine procedure. Across the studies assessed, a mean number of approximately 44 active clones were obtained in an average size of approximately 53,000 clones tested using naïve screening protocols. This number could be significantly increased in shorter times when novel metagenome enzyme sequences obtained by direct sequencing are selected and subjected to high-throughput expression for subsequent production and characterization. The pre-screening of clone libraries by naïve screens followed by the pyrosequencing of the inserts allowed for a 106-fold increase in the success rate of identifying genes encoding enzymes of interest. However, a much longer time, usually on the order of years, is needed from the time of enzyme identification to the establishment of an industrial process. If the hit frequency for the identification of enzymes performing at high turnover rates under real application conditions could be increased while still covering a high natural diversity, the very expensive and time-consuming enzyme optimization phase would likely be significantly shortened. At this point, it is important to review the current knowledge about the success of fine-tuned naïve- and sequence-based screening protocols for enzyme selection and to describe the environments worldwide that have already been subjected to enzyme screen programmes through metagenomic tools. Here, we provide such estimations and suggest the current challenges and future actions needed before environmental enzymes can be successfully introduced into the market.


Assuntos
Bactérias/enzimologia , Bioprospecção/tendências , Enzimas/química , Enzimas/genética , Metagenômica/tendências , Bactérias/química , Bactérias/genética , Bioprospecção/métodos , Enzimas/metabolismo , Metagenômica/métodos
19.
Proteomics ; 15(20): 3508-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26201687

RESUMO

Crude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa). Using shotgun metaproteomics and community metabolomics approaches, the presence of 651 microbial proteins and 4776 metabolite mass features have been detected in these three environments, revealing a high metabolic heterogeneity between the investigated sites. The proteomes displayed the prevalence of anaerobic metabolisms that were not directly related with petroleum biodegradation, indicating that in the absence of oxygen, biodegradation is significantly suppressed. This suppression was also suggested by examining the metabolome patterns. The proteome analysis further highlighted the metabolic coupling between methylotrophs and sulphate reducers in oxygen-depleted petroleum-polluted sediments.


Assuntos
Metabolômica , Poluição por Petróleo , Proteômica , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Itália , Mar Mediterrâneo , Petróleo/toxicidade , Microbiologia da Água
20.
Sci Rep ; 5: 11651, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26119183

RESUMO

Two of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.05) with both temperature and chemical diversity. Furthermore, we observed a link between temperature and chemical and biological diversity that was stronger in chronically polluted sites than in pristine ones where accidental oil spills occurred. We propose that low temperature increases bacterial richness while decreasing catabolic diversity and that chronic pollution promotes catabolic diversification. Our results further suggest that the bacterial populations in chronically polluted sites may respond more promptly in degrading petroleum after accidental oil spills.


Assuntos
Bactérias/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Poluição por Petróleo , Petróleo/microbiologia , Temperatura , Aerobiose , Anaerobiose , Bactérias/genética , Biodegradação Ambiental , Simulação por Computador , Genes Bacterianos , Região do Mediterrâneo , Metaboloma , Metabolômica , Análise de Componente Principal , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...